
UCBASE Software Documentation

CSM GmbH, Filderstadt, Germany
www.csm.de/unicom/

March 27, 2025

www.csm.de/unicom/

Date Version Name Changes
2012-10-08 1.00 CSM/RN first release
2012-11-18 1.01 CSM/RN typos corrected
2013-03-01 1.10 CSM/RN K-Line, GPIOs, PWM
2013-03-14 1.11 CSM/RN LVDS Enable
2013-03-15 1.12 CSM/RN bug fix FASTFLASH_TAB
2013-05-21 2.07 CSM/RN ADC_STAT command, baud rate set-

ting via index
2013-08-28 2.15 CSM/RN CONFIG_INTERFACE for STPon-

CAN changed
2014-03-05 3.00 CSM/RN for Rev.C
2014-03-18 3.01 CSM/RN fix in FLEXRAY_CONFIG command
2014-03-25 3.07 CSM/RN bits of CAN status register specified
2014-04-02 3.08 CSM/RN some error codes added
2014-04-11 3.08a CSM/RN CAN_FILTER: removing filters
2014-07-21 3.14 CSM/RN CAN raw configure, default send ID
2014-08-19 3.16 CSM/RN Typos, Error Codes added
2015-02-02 3.19 CSM/RN userdata management
2015-05-21 3.20 CSM/RN CAN over GPIOs
2015-05-26 3.21 CSM/RN automatic number of CAN messages

with RECEIVE_CAN
2015-09-23 3.50 CSM/RN multi module support
2015-09-23 3.56 CSM/RN FLEXRAY_CONFIG command cor-

rected
2016-02-25 3.57 CSM/RN error codes added
2016-03-15 3.58 CSM/RN default setting after power up
2016-05-10 3.59 CSM/RN adjustable CAN fill bytes
2016-07-28 4.00 CSM/RN UNICOM3 Rev.D
2016-09-30 4.25 CSM/RN Network commands expanded
2017-02-08 4.30 CSM/RN command timeout time for Rev.D cor-

rected
2017-06-01 4.31 CSM/RN missing parameter description with

194 command corrected
2017-06-20 4.38 CSM/RN Network protocols
2017-08-24 4.39 CSM/RN Auto/Master/Slave configuration with

BroadR Reach
2017-12-04 4.40 CSM/RN INIT_CAN command without reset of

CAN controller
2017-12-05 4.41 CSM/RN reworked
2017-12-13 4.42 CSM/SC CONFIG_INTERFACE argument for

STPonCAN with CAN FD added
...continued on next page

1

Date Version Name Changes
2018-01-04 4.44 CSM/SC MAC_FILTER command added
2018-02-25 4.45 CSM/RN READ (file) with 2-byte count, ad-

vanced RESET command
2018-05-25 4.46 CSM/RN extended STATUS_CAN command
2018-06-06 4.47 CSM/RN RAM file system
2018-10-16 4.48 CSM/RN More understandable config interface

command
2018-11-14 4.50 CSM/RN universal CRC computation over files
2018-12-18 4.51 CSM/RN more error codes
2019-02-22 4.55 CSM/RN CAN Pre Prescaler
2019-03-14 4.57 CSM/RN address range with hex files for

CRC(60) command
2019-04-02 4.57a CSM/RN more exactly explanation of STPon-

CANFD protocol
2019-04-16 4.58 CSM/RN SEND_CANFD, RECEIVE_CANFD
2019-05-08 4.60 CSM/RN Support of new CAN FD controller

(Rev.D only)
2019-07-04 4.62 CSM/RN Downgrade protection (error code)
2020-01-13 4.63 CSM/RN typos
2020-01-30 4.74 CSM/RN logistic commands, 64 GB capability
2020-03-05 4.80 CSM/RN more network support
2020-08-26 4.82 CSM/RN logging commands
2020-10-02 4.84 CSM/RN Device Scan, UDP Broadcast
2021-01-22 4.90 CSM/RN Secure Boot
2021-07-06 4.94 CSM/RN Network Factory Reset via jumper
2021-07-06 4.94a CSM/RN typos corrected
2021-09-02 4.96 CSM/RN single wire CAN transceiver on all

CANs
2021-09-14 4.97 CSM/RN Rev.C1
2022-01-25 4.98 CSM/RN Suppressible transceiver emulation wih

GPIO CANs
2022-04-07 4.99 CSM/RN Command timeout adjustable in ms

(Rev.D, Rev.C1)
2022-08-29 5.00 CSM/RN UNICOM4 Rev.E support
2022-10-11 5.00a CSM/RN Corrections in X_FASTFLASH
2023-07-06 5.01 CSM/RN UNICOM revisions
2023-08-31 5.02 CSM/RN command CONTROL_VGPIO, CON-

TROL_GPIO and READ_GPIO for
UC4 corrected

...continued on next page

2

Date Version Name Changes
2024-01-24 5.23 CSM/RN CONTROL_PWM_UNIT with 12

GPIOs for UNICOM4
2024-04-18 5.23a CSM/RN Corrections in X_FASTFLASH and

X_FASTFLASH_TAB
2024-10-31 5.23b CSM/RN Corrections in ETHERNET_INIT etc.
2025-01-16 5.23c CSM/RN Corrections in INIT_CAN and STA-

TUS_CAN
2025-03-27 5.32 CSM/RN RESET command via UDP broadcast

3

All concepts and procedures introduced in this document are intellectual properties of CSM GmbH. Copying or usage by third parties without written
permission of CSM GmbH is strictly prohibited. All trademarks mentioned in this document are properties of their respective owners. This

document is subject to changes without notice!

CSM GmbH Computer-Systeme-Messtechnik
Raiffeisenstrasse 36 70794 Filderstadt-Bonlanden
Phone ++49 711 77964 0 Fax ++49 711 77964 40
mailto:unicom@csm.de http://www.csm.de

Copyright © 2012 . . . 2024 by CSM GmbH

4

mailto:unicom@csm.de
http://www.csm.de

Contents

1 Overview 9
1.1 Introduction . 9
1.2 UNICOM device history . 9

1.2.1 UNI-COM II/UNI-COM II+ 9
1.2.2 UNICOM3 . 9
1.2.3 UNICOM4 . 10
1.2.4 Software Compatibility 10
1.2.5 Device Revisions in this Document 10

1.3 What is UCBASE . 10
1.4 Principles . 11

1.4.1 Controlling UNICOM 12
1.4.2 Communication with ECU 13
1.4.3 Fast flash programming of ECU 14
1.4.4 Interface Tester . 15
1.4.5 Other . 16
1.4.6 Available ECU Interfaces 17

2 PC Communication with UNICOM 18
2.1 Interfaces . 18

2.1.1 RS232 Interface . 18
2.1.2 USB Interface . 18
2.1.3 Ethernet Interface . 19

2.2 Command protocols . 19
2.2.1 STP command protocol 19
2.2.2 XSTP command protocol 20

2.3 ECU Numbers . 22
2.3.1 Why ECU Numbers? . 22
2.3.2 ECU Number Address Scheme 22

2.4 STP over LAN . 23
2.4.1 Introduction . 23
2.4.2 Simple Network Protocol (UDP+TCP) 24
2.4.3 Advanced Network Protocol (UDP only) 24

5

CONTENTS CONTENTS

2.4.4 Examples . 26
2.4.5 Scanning for devices, UDP Broadcast 27

3 File System 29
3.1 Basics . 29
3.2 File Access, Fast Mode . 29
3.3 Storage Medium . 29
3.4 RAM Filesystem . 30

4 FASTFLASH 31
4.1 Basics . 31
4.2 Principle . 31
4.3 FASTFLASH protocols . 32

5 Default Settings after Power Up 33
5.1 PC interfaces . 33
5.2 GPIO and Power Switches Default Settings 33
5.3 CAN Default Settings . 33
5.4 FlexRay Default Settings . 34
5.5 Analog Input Default Settings 34
5.6 LVDS Lines Default Settings . 34

6 UCBASE commands 35
6.1 Configuration and Status Commands 36

6.1.1 UCBASE::CONFIG_UNICOM (1) 36
6.1.2 UCBASE::READ_VERSION (2) 40
6.1.3 UCBASE::READ_STATUS (3) 41
6.1.4 UCBASE::CONFIG_INTERFACE (4) 42
6.1.5 UCBASE::FAST_MODE (5) 45

6.2 Module Command . 47
6.2.1 UCBASE::MODULE (20,40,41,42,43) 47

6.3 File related Commands . 50
6.3.1 UCBASE::CHECK_CARD (9, 10) - (3) 51
6.3.2 UCBASE::FORMAT (9, 10) - (15) 52
6.3.3 UCBASE::INFO (9, 10) - (16) 54
6.3.4 UCBASE::OPEN (9, 10) - (21) 55
6.3.5 UCBASE::SEEK (9, 10) - (22) 57
6.3.6 UCBASE::READ (9, 10) - (23) 59
6.3.7 UCBASE::WRITE (9, 10) - (24) 60
6.3.8 UCBASE::CLOSE (9, 10) - (26) 61
6.3.9 UCBASE::DELETE (9, 10) - (30) 62
6.3.10 UCBASE::GET_DIR (9, 10) - (42) 63
6.3.11 UCBASE::CHANGE_DIR (9, 10) - (43) 64
6.3.12 UCBASE::MAKE_DIR (9, 10) - (44) 65

6

CONTENTS CONTENTS

6.3.13 UCBASE::REMOVE_DIR (9, 10) - (45) 67
6.3.14 UCBASE::READ_DIR (9, 10) - (47) 68
6.3.15 UCBASE::FILL (9, 10) - (57) 70
6.3.16 UCBASE::CHECK (9, 10) - (58) 72
6.3.17 UCBASE::CHECK32 (9, 10) - (59) 74
6.3.18 UCBASE::CHECK_CRC (9, 10) - (60) 76
6.3.19 Error codes of file commands 80

6.4 CAN Commands . 81
6.4.1 UCBASE::ADJUST_FILLBYTES (92) 81
6.4.2 UCBASE::CAN_FILTER (93) 82
6.4.3 UCBASE::CAN_CONFIG (94) 84
6.4.4 UCBASE::CLEAR_CAN (95) 86
6.4.5 UCBASE::SEND_CAN (96) 87
6.4.6 UCBASE::RECEIVE_CAN (97) 89
6.4.7 UCBASE::INIT_CAN (98) 92
6.4.8 UCBASE::MODIFY_CAN (100) 95
6.4.9 UCBASE::STATUS_CAN (102) 98
6.4.10 UCBASE::MULTIPLEX_CAN (103) 100
6.4.11 UCBASE::SEND_CANFD (104) 103
6.4.12 UCBASE::RECEIVE_CANFD (105) 105

6.5 FlexRay Commands . 107
6.5.1 UCBASE::FLEXRAY_CONFIG (194) 107

6.6 Network Commands . 109
6.6.1 UCBASE::ETHERNET_INIT (80) 109
6.6.2 UCBASE::ETHERNET_STATUS (81) 113
6.6.3 UCBASE::SELECT_PHY (82) 114
6.6.4 UCBASE::PING (83) . 115
6.6.5 UCBASE::MAC_FILTER (84) 116
6.6.6 UCBASE::SCAN_DEVICE (89) 118
6.6.7 UCBASE::Factory Reset 120

6.7 FASTFLASH . 121
6.7.1 UCBASE::X_FASTFLASH (14) 121
6.7.2 UCBASE::X_FASTFLASH_TAB (15) 124

6.8 Batch commands . 126
6.8.1 UCBASE::START_BATCH (30) 126
6.8.2 UCBASE::BATCH_RESPONSE (31) 128
6.8.3 UCBASE::BATCH_DELAY (32) 129
6.8.4 UCBASE::BATCH_CHECK_RESPONSE (33) 130

6.9 Hardware Control and Status Commands 131
6.9.1 UCBASE::READ_ADC (66) 131
6.9.2 UCBASE::ADC_STAT (67) 132
6.9.3 UCBASE::CONTROL_VGPIO (70) 134
6.9.4 UCBASE::CONFIG_GPIO (71) 136
6.9.5 UCBASE::CONTROL_GPIO (72) 137

7

CONTENTS CONTENTS

6.9.6 UCBASE::READ_GPIO (73) 139
6.9.7 UCBASE::CONTROL_PWM(75) 140
6.9.8 UCBASE::CONTROL_VIO (77) 142

6.10 Firmware Update . 143
6.10.1 UCBASE::FIRMWARE_UPDATE (126) 143
6.10.2 UCBASE::RESET_UNICOM (127) 145

6.11 Logistic . 147
6.11.1 UCBASE::READ_LOGISTICS (6) 147
6.11.2 UCBASE::READ_CAPABILITIES (7) 149
6.11.3 UCBASE::USERDATA (125) 150

6.12 Logging Commands . 152
6.12.1 UCBASE::LOG_SET_CHANNEL (200) 152
6.12.2 UCBASE::LOG_SET_FILTER (201) 154

6.13 Error Codes . 156

8

Chapter 1

Overview

1.1 Introduction

This document describes features of the UCBASE software for UNICOM. It con-
tains chapters about principle of operation, description of telegram format that is
used for communication between PC and UNICOM as well as a complete com-
mand reference of UCBASE software.

The document should be read at first when starting with UNICOM.

There are much more documents which describe loadable parts of UNICOM soft-
ware (called "Modules") and about software that runs on target ECUs (called
"Toolboxes") These documents are project specific and describe the special fea-
tures of these software components.

1.2 UNICOM device history

1.2.1 UNI-COM II/UNI-COM II+

These devices were the first which ever released by CSM. They are not scope
of this document. If information about these devices is needed, please refer to
ffcombi.pdf document.

1.2.2 UNICOM3

With UNICOM3, a complete new hardware platform has been released. There
are different revisions of this platform. All these revisions are supported by the
UCBASE software.

Rev.A, Rev.B Now deprecated
Rev.C Optionally with FlexRay support

9

Overview What is UCBASE

Rev.C1 CAN FD support for 2 CAN channels, but no FlexRay
Rev.D Optionally with CAN FD for 2 CAN channels, optionally

with FlexRay. Ethernet (LAN) support, limited RAM file
support

1.2.3 UNICOM4

UNICOM4 is an updated hardware platform with higher performance and storage
capabilities, supported by UCBASE software.

Rev.E Always with CAN FD, 4 channels, optionally with FlexRay.
Ethernet (LAN) support, RAM file support.

1.2.4 Software Compatibility

There is one extra UCBASE variant for every UNICOM revision. A blocking
mechanism is implemented to avoid loading an unsuitable UCBASE software onto
an UNICOM device.

Loadable Software Modules are compatible with all UNICOM revisions if sup-
ported by the current hardware capabilities of the platform. If that is not the case,
a special and unique error code is reported when trying to load the module to an
unsuitable device revision.

1.2.5 Device Revisions in this Document

With "UNICOM", all devices UNICOM3 Rev.C..D and UNICOM4 Rev.E are be-
ing meant. If there is something special for a dedicated device, there is a mark as
"UNICOMx Rev.y only".

1.3 What is UCBASE

UCBASE is the main software and operating system that runs on UNICOM. It
realizes the communication with a Test PC over RS232, USB or LAN and the
access to the internal storage medium over a powerful file system that supports long
file names. Further it realizes basic functions for sending and receiveing over CAN
and other interfaces and a universal Gateway function that redirects the commands
from Test PC to the various hardware and software components of UNICOM or to
a connected ECU.

The most important feature of UCBASE is the capability to load software modules
which extend features of UNICOM. That makes it able to adapt UNICOM for new
projects and requests without hardcoding it into the main software.

10

Overview Principles

1.4 Principles

The following figure shows a typical installation of test computer, UNICOM and
ECU:

RS232

USB

CAN 1..4

UNICOM Supply ECU Supply

Test
Computer

UNICOM
UCBASE SW Other InterfacesLAN

11

Overview Principles

1.4.1 Controlling UNICOM

• The test computer controls the UNICOM device by sending command tele-
grams. It is connected over RS232, USB or LAN to UNICOM.

• Every command telegram from test computer triggers exactly one response
telegram.

• UNCOM3 never sends telegrams without a command.

CAN 1..4

UNICOM Supply ECU Supply

Test
Computer

UNICOM
UCBASE SW Other Interfaces

RS232

USB

LAN

12

Overview Principles

1.4.2 Communication with ECU

• UNICOM with UCBASE can act as command gateway between test com-
puter and ECU.

• In this mode UNICOM is invisible; all commands from test compuer are
redirected thru one of the verious interfaces to the ECU.

• The interface which realizes communication with ECU and the communica-
tion protocol can be configured and selected in a wide range.

• Since using loadable software modules, there are no limits to implement new
communication protocol types.

CAN 1..4

UNICOM Supply ECU Supply

Test
Computer

UNICOM
UCBASE SW Other Interfaces

RS232

USB

LAN

13

Overview Principles

1.4.3 Fast flash programming of ECU

• UNICOM with UCBASE can be used for in-circuit fast flash programming
using the CAN bus or other interfaces of ECU

• A special command from test computer starts the fast flash mode

• Now UNICOM performs the entire communication with the ECU for trans-
ferring and programming the flash data by itself without any help of the test
computer.

• After finishing, UNICOM sends a response telegram to the test computer

• The data to be programmed are stored on UNICOM’s internal storage medium

• For communication with ECU, e.g. up to 4 CAN buses can be used in parallel

CAN 1..4

UNICOM Supply ECU Supply

Test
Computer

UNICOM
UCBASE SW Other Interfaces

RS232

USB

LAN

14

Overview Principles

1.4.4 Interface Tester

• UNICOM with UCBASE can used as tester for several ECU interfaces ("Re-
peater").

• In this mode, test computer only configures the interface to be used. UNI-
COM then sends for every message that has been received by ECU a re-
sponse message back to ECU without help of test computer.

CAN 1..4

UNICOM Supply ECU Supply

Test
Computer

UNICOM
UCBASE SW Other Interfaces

RS232

USB

LAN

15

Overview Principles

1.4.5 Other

Since UCBASE can be extended by loadable modules, UNICOM can be used for
much more tasks:

• Monitoring Interfaces

• Computing statistics over received data

• Realizing bus simulations

• ...

Beginning with UCBASE V3.5, up to 4 modules can be used to the same time.
Refer to MODULE command (chapter 6.2.1 on page 47).

16

Overview Principles

1.4.6 Available ECU Interfaces

The following interface types between UNICOM and ECU are available:

• 4 CAN buses, 2 of them switchable between High and Low Speed drivers
(remaining CANs: always High Speed), 1 of them with switchable Measure
Lines and Error Conditions. CANs can be routed to GPIOs and LVDS lines

• 1 Single Wire CAN bus (not UNICOM3 Rev.C1 and UNICOM4 Rev.E)

• (UNICOM3 Rev.C1, Rev.D) CAN1 and CAN2 can configured for CAN FD
protocol.

• (UNICOM4 Rev.E) CAN1 thru CAN4 can configured for CAN FD protocol.

• FlexRay

• 2 K-Line/LIN buses

• Asynchronous Serial Interface over TTL lines

• SPI

• JTAG

• 8 General Purpose In/Outputs (12 on UNICOM4 Rev.E)

• 5 pairs of universal LVDS lines

• OneWire interface (UNICOM4 Rev.E)

• (UNICOM3 Rev.D+UNICOM4 Rev.E) 2 Ethernet Ports, either an Fast Eth-
ernet or a BroadR Reach phy.

A number of interfaces are mappable via Switch Matrix so that is possible e.g. to
map a CAN controller to GPIO or LVDS to build a raw CAN interface without
transceivers.

Further more, Power supply for the interface drivers inside of UNICOM can be
provided by UNICOM itself (5V or 3.3V) or can be provided externally (e.g. by
ECU, 1.8V up to 5V).

The UNICOM3 Rev.D and UNICOM4 Rev.E has an additional power supply which
is identical to that one which supplies the drivers. It can be used for supplying
ECUs.

17

Chapter 2

PC Communication with
UNICOM

The following chapter describes the command and response telegram format that
is used for communication between test computer and UNICOM.

2.1 Interfaces

Two different interfaces can be used for communication with test computer: RS232
or USB

With the UNICOM3 Rev.D and UNICOM4 Rev.E, an additional Ethernet interface
for PC communication is available.

2.1.1 RS232 Interface

This is a standard PC UART interface. It must be configured as follows:

• 8 bits per frame

• no parity

• 1 stop bit

• no hardware handshake

• baud rate can be chosen between 9600 baud and 921600 baud according to
the capabilities of PC interface.

2.1.2 USB Interface

UNICOM supports USB standard 2.0. For communication over USB, a special
driver must be installed on the test computer that provides a virtual COM port

18

PC Communication with UNICOM Command protocols

which can be handled as a normal RS232. No parameters must be adjusted. The
interface always uses the maximum communication speed.

2.1.3 Ethernet Interface

(UNICOM3 Rev.D+UNICOM4 Rev.E only)

Communication with PC can also be established by simply connecting UNICOM
with an ethernet cable to a PC network interface or an ethernet switch. To let
that work, network parameters of UNICOM must be adjusted to the local network
using the ETHERNET_INIT(80) command (ref. chapter 6.6.1 on page 109) over
an alternate interface. After that, UNICOM can receive and send commands which
are encapsulated by UDP packets.

2.2 Command protocols

There are 2 different protocols implemented: the STP ("Supplier Test Protocol")
and the XSTP ("Extended Supplier Test Protocol"). The Protocol can be selected
using the CONFIG_UNICOM(1) command (refer chapter 6.1.1 on page 36).

2.2.1 STP command protocol

Command Format
byte 0 byte 1 byte 2 byte 3 . . . byte N-1 byte N

len ecu command param . . . param cks
N 0xC0 cmd . . .

len length of telegram including itself and excluding of check-
sum at end

ecu ECU number
command command code
param optional parameters
cks xor checksum over the telegram excluding itself

Response Format

byte 0 byte 1 byte 2 byte 3 . . . byte N-1 byte N
len ecu status param . . . param cks
N 0xC0 stat . . .

len length of telegram including itself and excluding of check-
sum at end

ecu ECU number (same as in command telegram)
status response code

19

PC Communication with UNICOM Command protocols

param optional parameters
cks xor checksum over the telegram excluding itself

Remarks

• This is the default protocol after power up of UNICOM.

• With this protocol format, up to 255 bytes (plus checksum) can be transferred
to/from UNICOM

• The ECU number addresses the destination of the command telegram. 0xC0
let UCBASE execute the telegram itself. Refer to "ECU Numbers" (chap-
ter 2.3 on page 22) for complete description.

2.2.2 XSTP command protocol

Command Format
byte 0 byte 1 bits 0..3 byte 1 bits 4..7 byte 2
len l len h ecu command

N 0xC cmd

byte 3 . . . byte N-1 byte N
param . . . param cks

. . .

len length of telegram including itself and excluding of check-
sum at end

ecu ECU number
command command code
param optional parameters
cks xor checksum over the telegram excluding itself

Response Format

byte 0 byte 1 bits 0..3 byte 1 bits 4..7 byte 2
len l len h ecu status

N 0xC stat

byte 3 . . . byte N-1 byte N
param . . . param cks

. . .

len length of telegram including itself and excluding of check-
sum at end

ecu ECU number (same as in command telegram)

20

PC Communication with UNICOM Command protocols

status response code
param optional parameters
cks xor checksum over the telegram excluding itself

Remarks

• Since length information consists of 12 bits, this protocol format can transfer
up to 4095 bytes (plus checksum) to/from UNICOM

• The ECU number addresses the destination of the command telegram. 0xC
let UCBASE execute the telegram itself. Refer to "ECU Numbers" (chap-
ter 2.3 on page 22) for complete description.

• XSTP is compatible to STP protocol if the telegram is not longer then 255
bytes.

21

PC Communication with UNICOM ECU Numbers

2.3 ECU Numbers

2.3.1 Why ECU Numbers?

The ECU number in command telegram determines which part of software should
execute it. UNICOM provides 4 so called interface slots. Every slot can be con-
figured for a real physical interface (CAN, K-Line, ...) or even the MODULE
interface which let process the command telegram a loaded module. With the ECU
number, one of these slots can be addressed so that the command telegram is redi-
rected to the interface which the slot is configured for.

For instance: if slot 0 is configured for using STP-on-CAN protocol over CAN1
and the ECU number in the command telegram addresses it, the command telegram
is converted into STP-on-CAN protocol and sent over CAN1 to a connected ECU.

Since every slot can be configured for different interfaces, the command telegram
can simply be redirected to different interfaces by changing the ECU number.

Slots can be configured using the CONFIG_UNICOM(1) command (refer chap-
ter 6.1.1 on page 36).

2.3.2 ECU Number Address Scheme

Since in XSTP protocol ECU number consists only of 4 bits, the lower 4 bits of an
8-bit-ECU number in STP protocol are ignored by the UCBASE software.

The 4 bits of ECU number are divided into 2 2-bit-fields (xxyy) which are used for
command destination addressing:

• xx00: addresses interface slot 0

• xx01: addresses interface slot 1

• xx10: addresses interface slot 2

• xx11: addresses interface slot 3

with:

• 00yy: forwarding telegram up to end of chain

• 01yy: not yet used

• 10yy: execute it by module code itself (if slot is configured for MODULE)

• 11yy: execute if by UCBASE itself (no redirection)

Since modules can execute command telegrams by itself or even redirect to an ECU
that is connected to a hardware interface that is handled by the module, there must
be a possibility to let the module distinguish it. 10yy means execution by module
itself, 00yy means redirect.

22

PC Communication with UNICOM STP over LAN

An example:

• The JTAG_MPC module is loaded

• Slot 0 is configured for MODULE

• Now, all command telegrams with an ECU number of xx00 are being redi-
rected to the JTAG_MPC module

• The JTAG_MPC module evaluates xx:

– 10: the module executes this command (e.g. fetching version informa-
tion of module)

– 00: the module forwards the telegram to the ECU over the JTAG inter-
face.

2.4 STP over LAN

2.4.1 Introduction

With UNICOM3 Rev.D and UNICOM4 Rev.E devices, STP communication is also
possible over an Ethernet Interface (RJ45 connector on UNICOM’s front side, la-
beled with "LAN").

The UNICOM device can now accessed also from a foreign network segment. It
supports now a standard gateway.

UNICOM can use fixed network settings which can be configured by the ETH-
ERNET_INIT(80) command as well as automatic configured network settings by
DHCP (ref. chapter 6.6.1 on page 109).

Communication over LAN is simply done by sending and receiving UDP or TCP
packets that contain STP/XSTP telegrams as described above (ref. chapter 2.2.1 on
page 19 and chapter 2.2.2 on page 20), including leading length information and
trailing checksum. Long telegrams are split automatically into multiple UDP/TCP
packets (UDP/TCP segmentation).

With UDP, UNICOM supports two different network protocols:

• Simple Network Protocol

• Advanced Network Protocol

Both protocol types are automatically recognized by UNICOM, nothing needs to
be configured.

The following two sections describe these both protocol types and explain advan-
tages and disadvantages.

23

PC Communication with UNICOM STP over LAN

2.4.2 Simple Network Protocol (UDP+TCP)

As its name says, it is simple. The PC sends the command telegram encapsulated
into one UDP/TCP packet (or more ones if it is larger then MTU). UNICOM exe-
cutes the command and sends the response telegram in the same way.

Splitting of long telegrams into more then one UDP/TCP packets and re-assembling
is part of the UDP/TCP protocol level, and it is completely hidden for the user.

The size of the payload area of the UDP/TCP packets must exactly match with the
telegram size.

Advantage of this protocol type is that it can implemented very easily by the PC
since there is no difference to the STP protocol over the other interfaces.

But since UDP protocol doesn’t ensure that all packets which are being sent, are
also being received at the opposite side, it is not even reliably. It works well if
UNICOM is connected directly by an ethernet cable to the PC or Switch. But if
e.g. a wireless connection is somewhere between PC and UNICOM it may occur
that command or response telegrams can be lost.

TCP has its own secured transport level, so there is ensured that all the packets
reach its receiver.

2.4.3 Advanced Network Protocol (UDP only)

This protocol type is a bit more complex.

If UDP packets are being lost, the PC will get no response from UNICOM. But
there can two different cases occur:

• Case one: the command telegram is being lost. UNICOM doesn’t receive
any command and consequently doesn’t respond.

• Case two: UNICOM receives the command, executes it and sends response,
but response will be lost.

From PC’s point of view both cases look equal, but not for UNICOM. In the first
case it does nothing but in the second one it executes the command correctly. Its
state may be different after occuring case one or two.

The Advanced Network Protocol takes this effect into account by expanding the
sequence of UDP packets:

• PC sends a Command Telegram, with an additional serial number (1 byte)
and its one’s complement (1 byte) behind of the telegram checksum.

• UNICOM sends an Acknowledge Telegram immediately after receiving the
command and before it executes it, back to PC. An Acknowledge Telegram
is 4 bytes in size (Length, ECU, Status, Checksum) where status value is

24

PC Communication with UNICOM STP over LAN

0xAF, followed by serial number and its one’s complement which is the
same as received.

• UNICOM executes the command and sends the response telegram back to
PC which is also expanded by the both serial number bytes.

• PC compares the serial numbers which it sent and received, must be equal.

• PC increments its serial number for the next command.

If no packets are lost, the data flow is exacly as described above.

If PC doesn’t receive the Acknowledge Telegram or the Response Telegram, one
of the two "lose cases" are occurred. In this case, PC must repeat sending the com-
mand telegram with the same serial number (if it didn’t receive the Acknowledge
Telegram, it can repeat sending the command immediately, if it didn’t receive the
response telegram it must wait the adjusted timeout time before repetition).

Now following happens:

• Case one: UNICOM received no command with the first try of PC. The
second try may reach UNICOM, it recognizes it as new command (new serial
number), sends the Acknowledge Telegram, execute the command and sends
the Response Telegram.

• Case two: UNICOM received the command and executed it but the Ac-
knowlege or Response Telegram was lost. With the second try of PC it sees
the same command again (equal serial number). It doesn’t execute it but it
sends the Acknowledge Telegram and the last Response Telegram twice.

PC must also repeat sending the command with equal serial number if the received
serial number doesn’t match with the current one. That can happen if UDP packets
reach their destination in a different order then they have been sent.

The advantage of this strategy is ensuring that neither commands are lost nor UNI-
COM unwanted executes commands twice this way.

The Disadvantage is a bit more effort to implement the protocol on PC side.

Advanced Network Protocol also works with TCP, but it is not recommended to
use because of the double protocol overhead.

25

PC Communication with UNICOM STP over LAN

2.4.4 Examples

READ_VERSION command, simple

Telegram Flow
Sent:

3 192 2 193
03 C0 02 C1
. . . .

>>> 03 c0 02 c1
<<< 13 c0 a0 55 43 42 41 53 45 20 20 20 20 20 56 34 2e 33 38 17

Received:
19 192 160 85 67 66 65 83 69 32 32 32 32 32 86 52 46 51 56 23
13 C0 A0 55 43 42 41 53 45 20 20 20 20 20 56 34 2E 33 38 17
. . . U C B A S E V 4 . 3 8 .

Wireshark Network Dump
No. Time Source Destination Protocol Length
159 4.745261000 192.168.1.13 192.168.1.241 UDP 46
Info Source port: 42795 Destination port: 8738 [UDP CHECKSUM INCORRECT]

Frame 159: 46 bytes on wire (368 bits), 46 bytes captured (368 bits) on interface 0
Ethernet II, Src: Toshiba_56:6a:85 (b8:6b:23:56:6a:85), Dst: Csm_04:9c:43 (d4:6c:da:04:9c:43)
Internet Protocol Version 4, Src: 192.168.1.13 (192.168.1.13), Dst: 192.168.1.241 (192.168.1.241)
User Datagram Protocol, Src Port: 42795 (42795), Dst Port: 8738 (8738)
Data (4 bytes)

0000 03 c0 02 c1
Data: 03c002c1
[Length: 4]

No. Time Source Destination Protocol Length
160 4.745395000 192.168.1.241 192.168.1.13 UDP 62
Info Source port: 8738 Destination port: 42795

Frame 160: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface 0
Ethernet II, Src: Csm_04:9c:43 (d4:6c:da:04:9c:43), Dst: Toshiba_56:6a:85 (b8:6b:23:56:6a:85)
Internet Protocol Version 4, Src: 192.168.1.241 (192.168.1.241), Dst: 192.168.1.13 (192.168.1.13)
User Datagram Protocol, Src Port: 8738 (8738), Dst Port: 42795 (42795)
Data (20 bytes)

0000 13 c0 a0 55 43 42 41 53 45 20 20 20 20 20 56 34 ...UCBASE V4
0010 2e 33 38 17 .38.

Data: 13c0a0554342415345202020202056342e333817
[Length: 20]

26

PC Communication with UNICOM STP over LAN

READ_VERSION command, advanced, S/N = 0

Telegram Flow
Sent:

3 192 2 193
03 C0 02 C1
. . . .

>>> 03 c0 02 c1 00 ff
<<< 03 c0 af 6c
<<< 13 c0 a0 55 43 42 41 53 45 20 20 20 20 20 56 34 2e 33 38 17

Received:
19 192 160 85 67 66 65 83 69 32 32 32 32 32 86 52 46 51 56 23
13 C0 A0 55 43 42 41 53 45 20 20 20 20 20 56 34 2E 33 38 17
. . . U C B A S E V 4 . 3 8 .

Wireshark Network Dump
No. Time Source Destination Protocol Length
125 3.506099000 192.168.1.13 192.168.1.241 UDP 48
Info Source port: 43979 Destination port: 8738 [UDP CHECKSUM INCORRECT]

Frame 125: 48 bytes on wire (384 bits), 48 bytes captured (384 bits) on interface 0
Ethernet II, Src: Toshiba_56:6a:85 (b8:6b:23:56:6a:85), Dst: Csm_04:9c:43 (d4:6c:da:04:9c:43)
Internet Protocol Version 4, Src: 192.168.1.13 (192.168.1.13), Dst: 192.168.1.241 (192.168.1.241)
User Datagram Protocol, Src Port: 43979 (43979), Dst Port: 8738 (8738)
Data (6 bytes)

0000 03 c0 02 c1 00 ff
Data: 03c002c100ff
[Length: 6]

No. Time Source Destination Protocol Length
126 3.506195000 192.168.1.241 192.168.1.13 UDP 60
Info Source port: 8738 Destination port: 43979

Frame 126: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0
Ethernet II, Src: Csm_04:9c:43 (d4:6c:da:04:9c:43), Dst: Toshiba_56:6a:85 (b8:6b:23:56:6a:85)
Internet Protocol Version 4, Src: 192.168.1.241 (192.168.1.241), Dst: 192.168.1.13 (192.168.1.13)
User Datagram Protocol, Src Port: 8738 (8738), Dst Port: 43979 (43979)
Data (4 bytes)

0000 03 c0 af 6c ...l
Data: 03c0af6c
[Length: 4]

No. Time Source Destination Protocol Length
127 3.506209000 192.168.1.241 192.168.1.13 UDP 62
Info Source port: 8738 Destination port: 43979

Frame 127: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface 0
Ethernet II, Src: Csm_04:9c:43 (d4:6c:da:04:9c:43), Dst: Toshiba_56:6a:85 (b8:6b:23:56:6a:85)
Internet Protocol Version 4, Src: 192.168.1.241 (192.168.1.241), Dst: 192.168.1.13 (192.168.1.13)
User Datagram Protocol, Src Port: 8738 (8738), Dst Port: 43979 (43979)
Data (20 bytes)

0000 13 c0 a0 55 43 42 41 53 45 20 20 20 20 20 56 34 ...UCBASE V4
0010 2e 33 38 17 .38.

Data: 13c0a0554342415345202020202056342e333817
[Length: 20]

2.4.5 Scanning for devices, UDP Broadcast

If UNICOM is connected to PC only over LAN, and its network settings are un-
known (e.g. if a brand new device is used the first time), a mechanism is necessary
to scan for UNICOM devices on the network on the one hand, and figuring out
their network settings in order to communicate with them or change the settings on
the other hand.

This can be reached by sending STP commands over UDP as described in the chap-
ters above, but as UDP Broadcast datagrams. In this case, all the UNICOMs which
are receiving this packets, independently of their settings, will respond. Even if

27

PC Communication with UNICOM STP over LAN

none network is configured on the UNICOM it will work (e.g. if UNICOM is
configured for using a DHCP server but no one is reachable).

For security reasons, only a few commands of UCBASE are accessable by broad-
cast which may be used to identify the devices, see chapters which are describing
the commands.

The most important one is SCAN_DEVICE(89) (ref. chapter 6.6.6 on page 118)
which reports the basic settings in order to "catch" the device for reconfiguring.

But also a reconfiguration can be done this way using the ETHERNET_INIT(80)
command (ref. chapter 6.6.1 on page 109). The forms with appended MAC address
(which can be retrieved with the SCAN_DEVICE(89) command mentioned above)
must be used in order to select the device which is to reconfigured.

Note: if network settings are being changed over network, the new settings are
effective only after a device reset.

So it should nearly never necessary to connect USB or RS232 in order to re-animate
the network communication after an accidental miss-configuration.

An UDP Broadcast datagram has a Broadcast destination IP address, either 255.-
255.255.255 for global broadcast or a value that appears by oring the net address
and the negated net mask (local broadcast). The destination port must always be
0x2222 independently of configured port number. Source IP is the IP of host pc
and source port a random generated un-priviligated port number, not 0x2222.

UNICOM will respond with the host source IP as destination address and its own
IP address (if any). If no IP is configured at UNICOM side, it responds with a
braodcast IP as destination and 0.0.0.0 at source IP.

The CSM tool UniCMD has STP over UDP Broadcast implemented, please refer
to unicmd.pdf for more information.

A scan should be done using the SCAN_DEVICE(89) command mentioned above.
This reports about the network unit which is used for STP (physical net device or
VLAN), its settings and the MAC address of the first physical net device.

With hands of this MAC address, the ETHERNET_INIT(80) command can be used
to addjust any network settings of the UNICOM device.

28

Chapter 3

File System

3.1 Basics

UNICOM can store large amount of data inside of its storage medium using a file
system. The file system provides well-known functions as OpenFile, Read/WriteFile,
CloseFile and so on, over command telegrams.

Long file names consisting of nearly all printable characters can be used.

Of course, directories with unlimited number of entries and depth are supported.

3.2 File Access, Fast Mode

UNICOM is not a common USB drive. However, Writing and Reading of files and
directory management are realized with the FILE(9,10) command telegram (refer
to chapter 6.3 on page 50).

A special transfer protocol for fast writing of files can be used that is called "fast
mode" (refer chapter 6.1.5 on page 45). If this mode is activated, test computer
contiguously sends command telegrams without fetching response telegrams. That
increases the transfer speed rapidly, up to 2 MBytes/s with XSTP protocol are
possible.

3.3 Storage Medium

The internal storage medium of UNICOM is realized by using a compact flash
card (Rev.C) resp. a secure digital card (UNICOM3 Rev.D and UNICOM4 Rev.E),
currently 2 or 64 GByte in size. The cards should never removed from UNICOM or
plugged into a normal card reader. The data format on card is not compatible with
common PC file formats. Plugging into a card reader may destroy the data structure

29

File System RAM Filesystem

on card including the UCBASE software which is also stored on this medium. In
this case, UCBASE can’t start anymore.

3.4 RAM Filesystem

(UNICOM3 Rev.D and UNICOM4 Rev.E only)

UNICOM3 Rev.D and UNICOM4 Rev.E provide a file system in RAM addition-
ally to the storage medium. Data which are stored in this file system are lost with
power cycle or reset. This can be used to store data which should disappear with
power off of UNICOM due to security reasons. Moreover, it can store log data
which are uploaded to PC after every cycle. That would rest the flash cells inside
the storage medium.

The RAM file system is 1.5 MBytes in size on UNICOM3 Rev.D and resp. up to
32 MBytes on UNICOM4 Rev.E (depends of version of UCBASE software).

The RAM file system acts like a second "drive". It can be accessed by putting "b:"
in front of a file name. Consequently, "a:" addresses the file system an storage
medium which is the default. The default file system can be selected using the
CHANGE_DIR(43) file command (ref. chapter 6.3.11 on page 64) by setting path
to "b:/..." or "a:/...". If path is set to "a:" resp. "b:", UNICOM restores the current
working directory which was active before leaving the file system by switching to
the opposite one.

Due to the limited size of RAM that is available inside of UNICOM, the RAM
range which is occupied by RAM file system is shared with the modules that are
loaded into slots 1..3. If data has been written to the RAM file system, modules
can’t be loaded into slot 1..3 (MODULE command 41..43, ref. chapter 6.2.1 on
page 47) Only commands 20 and 40 are possible. To release that lock, a FOR-
MAT(15) file command with its form 2 and fs = 1 must be executed which deletes
all data on RAM file system (ref. chapter 6.3.2 on page 52).

On the other hand, if modules are residing in slots 1..3, access to the RAM file
system is not possible. After unloading these modules, the RAM file system is
automatically formatted and can be used again.

30

Chapter 4

FASTFLASH

4.1 Basics

One of the main applications where UNICOM is used is the in-circuit flash pro-
gramming of ECUs. The flash data to be programmed is stored on UNICOM’s
storage medium. The complete transfer of the data is realized by UNICOM itself,
triggered by the X_FASTFLASH(14) command (refer chapter 6.7.1 on page 121).
By using fast interfaces between UNICOM and ECU (e.g. multiple CANs, Flex-
Ray), high transfer rates are possible.

4.2 Principle

FASTFLASH process consists of the following steps:

• Preparation of UNICOM. Copy the flash data, module and toolbox files (s.
below) onto UNICOM’s storage medium using the file commands. This step
must be executed only once (as long as no changes of flash data must be
done).

• Download a toolbox to the ECU’s micro controller. A toolbox is a piece of
code that runs on ECU’s uC and realizes receiving of data from UNICOM
and the flash programming itself. The download is done via uC specific
debug interface such as JTAG, BDM, CAN/ASC Bootstrap and so on (initial
programming), or, if on ECU already an application software runs, over the
application protocol (re-programming). The download on UNICOM’s side
itself is realized by a loadable module.

• Start FASTFLASH by sending X_FASTFLASH(14) command to UNICOM.
UNICOM now begins to read the flash data from its storage medium and
transfers it to the ECU where the toolbox runs, portion by portion. The
toolbox on ECU receives the data and programs it into the flash memory.

31

FASTFLASH FASTFLASH protocols

If all data has been transferred, UNICOM sends a response telegram to test
computer. The protocol that is used for data transfer while FASTFLASH is
running is realized also by a loadable module, e.g. the same one that already
has done the toolbox download.

4.3 FASTFLASH protocols

Depending on ECU properties and available interfaces, different FASTFLASH
transfer protocols are being used. The FASTFLASH protocol is realized by load-
able modules and the toolbox on ECU side so that it can be flexibly adapted to
ECU specific things. It is completely hidden from the user.

In order to reach maximum data transfer speed, on UNICOM’s side, reading and
sending of data, and on ECU’s side, receiving and programming of data are being
done in parallel.

32

Chapter 5

Default Settings after Power Up

UCBASE can be configured by designated commands in a wide range in order
to adapt its functionality to a maximum possible number of projects. However,
directly after power up, UCBASE is configured per default in the way that only a
minimum of configure commands are necessary to let start its work.

The following sections give a short overview over the default settings of UCBASE
directly after power up, or after the RESET_UNICOM(127) command (ref. chap-
ter 6.10.2 on page 145).

5.1 PC interfaces

• RS232, USB and - if configured - LAN is ready to use

• RS232 is configured to a baudrate of 9600

• STP protocol is active

5.2 GPIO and Power Switches Default Settings

• V_GPIO is switched off.

• All GPIOs are configured as inputs.

• No pullup resistor is enabled.

• Both high side switches are off.

5.3 CAN Default Settings

• All 4 CAN buses are configured as High Speed CAN

33

Default Settings after Power Up FlexRay Default Settings

• Measure Lines and Single Wire CAN are off

• Termination is on.

• Error simulation is off.

• CAN Transceivers are connected to the bus.

• Bitrate is 500 kBits/s, standard IDs, Jump Width is 1.

• Send ID is 0x7E0, Receive ID is 0x7E8, Arbitration mask is "all bits rele-
vant".

• The Virtual FASTFLASH CAN is configured for 1MBits/s, standard IDs
and Jump Width of 1.

5.4 FlexRay Default Settings

• Both channels A and B of both FlexRay buses are connected.

• Measure lines are off

• Termination is on

• Bridge between the buses is off

• Error simulation is off.

• The FlexRay Transceivers are in "Normal Mode" (on).

• The FlexRay controllers are in reset state (will be activated by modules that
use FlexRay).

5.5 Analog Input Default Settings

• Both analog inputs AIN1 and AIN2 are ready for measurement.

5.6 LVDS Lines Default Settings

• All LVDS drivers are switched off.

34

Chapter 6

UCBASE commands

This chapter is a complete reference of supported UCBASE commands. For sim-
plification, all the commands are described in STP command protocol (ref. chap-
ter 2.2.1 on page 19). All commands can also be executed with the XSTP protocol
(ref. chapter 2.2.2 on page 20) if it is activated.

35

UCBASE commands Configuration and Status Commands

6.1 Configuration and Status Commands

6.1.1 UCBASE::CONFIG_UNICOM (1)

With help of this command, the communication protocol, the baud rate of test
computer interface, the interface slots and the command timeout time can be con-
figured.

Command, form 1 (without command timeout)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd prot baud
10 0xC0 1 MSB LSB

byte 6 byte 7 byte 8 byte 9 byte 10
is0 is1 is2 is3 cks

Command, form 2 (with command timeout in seconds)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd prot baud/10
11 0xC0 1 MSB LSB

byte 6 byte 7 byte 8 byte 9 byte 10 byte 11
is0 is1 is2 is3 to cks

Command, form 3 (with command timeout in milli seconds, UNICOM3 Rev.C1,
D and UNICOM4 Rev.E only)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd prot baud/10
12 0xC0 1 MSB LSB

byte 6 byte 7 byte 8 byte 9 byte 10 byte 11 byte 12
is0 is1 is2 is3 to_ms cks

MSB LSB

len length of telegram
ecu target address
cmd command code
prot 0xC0: switches to STP protocol, 0x0C: switches to XSTP

protocol
baud baud rate for test computer interface, see remarks.
is0..3 interface code for interface slots 0..3, see remarks.

36

UCBASE commands Configuration and Status Commands

to command timeout in sec, 1..84 for UNICOM4 Rev.E, 1..53
for UNCOM3 Rev.D, 1..71 else

to_ms command timeout in msec (UNICOM3 Rev.C1,D and UNI-
COM4 Rev.E only),
1..42949 for Rev.E, 1..53687 for Rev.D, 1..65535 for Rev.C1

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• Baud rate can be selected between 9600 and 921600. The baud parameter
has only effect with RS232 interface. It can have 2 different meanings:

– Index: this selects a baudrate from an internal pool, addressed by a
logical index:

Index Resulting Baud Rate
0 keeps current baud rate
1 9600 (default)
2 19200
3 38400
4 57600
5 115200
6 230400
7 460800
8 921600

– Baud Rate Value divided by 10: this adjusts the baud rate directly to
baud ·10. A baud rate range of 9600 thru 655350 can be adjusted that
way, means that baud can be 960 (0x03C0) thru 65535 (0xFFFF).

– The range from 9 thru 959 is invalid.

• If UNICOM receives a BREAK on RS232, the baud rate is reset to the de-
fault one (9600)

• The following interface codes are currently supported:

37

UCBASE commands Configuration and Status Commands

code Interface
0 no interface
2 Asynchronous Serial Protocol over K-Line
3 Asynchronous Serial Protocol over GPIOs
6 STP-on-CAN
8 CAN REPEATER
9 STP-on-UDP over ethernet (UNICOM3 Rev.D+UNICOM4 Rev.E ony)
15 MODULE

• If K-Line interface is selected for a slot, the received command telegram is
being redirected to the K-Line interface without any changes. Which K-Line
interface is used depends on the slot where the K-Line interface is selected:

– Slot 0: Output VIO1, Input VIO2, full duplex

– Slot 1: Output VIO2, Input VIO2, half duplex

– Slot 2: Output VIO3, Input VIO3, half duplex

– Slot 3: Output VIO1, Input VIO3, full duplex

• If GPIO interface is selected for a slot, the received command telegram is
being redirected to GPIOs without any changes. Which Pair of GPIOs is
used depends on the slot where the GPIO interface is selected:

– Slot 0: Output GPIO1, Input GPIO5, full duplex

– Slot 1: Output GPIO2, Input GPIO6, full duplex

– Slot 2: Output GPIO3, Input GPIO7, full duplex

– Slot 3: Output GPIO4, Input GPIO8, full duplex

Please consider that VGPIO must be provided when one of these interfaces
should be used, either by an external supply or by activating one of the inter-
nal supplies (3.3V or 5.0V) by using the CONTROL_VGPIO(70) command
(refer chapter 6.9.3 on page 134).

• The baud rate and the protocol mode of K-Line and GPIO interface can be
selected with the CONFIG_INTERFACE(4) command (refer chapter 6.1.4
on page 42), separately for each slot.

• If STP-on-CAN interface is selected for a slot, the default CAN bus that
is used for STP-on-CAN corresponds to the slot number. Slot 0: CAN 1 ...
Slot 3: CAN 4. That can be changed by using the CONFIG_INTERFACE(4)
command (refer chapter 6.1.4 on page 42).

• If CAN REPEATER interface is selected for a slot, the slot is not being used
for a gateway interface but the corresponding CAN repeats every received

38

UCBASE commands Configuration and Status Commands

CAN message with inverted data and an ID added by 8. That can be used for
test purposes.

39

UCBASE commands Configuration and Status Commands

6.1.2 UCBASE::READ_VERSION (2)

This command reports about the version information of UCBASE software.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 2

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 . . . byte 18 byte 19
len ecu status ver 1 . . . ver 16 check
19 0xC0

len length of telegram
ecu source address
status result status
ver 1..16 version string
cks checksum of telegram

Remarks

• As version string UCBASE Vx.yy should be reported.

• This command can be executed by STP over UDP Broadcast.

40

UCBASE commands Configuration and Status Commands

6.1.3 UCBASE::READ_STATUS (3)

With this command, the configured data that has been set with the CONFIG_UNICOM(1)
command (refer chapter 6.1.1 on page 36) can be recognized.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 3

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status prot
9 0xC0

byte 4 byte 5 byte 6 byte 7 byte 8 byte 9
is0 is1 is2 is3 to cks

len length of telegram
ecu source address
status result status
prot 0x01: STP active, 0x11: XSTP active
is0..is3 interface codes of the interface slots
to selected command timeout
cks checksum of telegram

41

UCBASE commands Configuration and Status Commands

6.1.4 UCBASE::CONFIG_INTERFACE (4)

With this command, a selected interface can be configured or modified.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-1 byte N
len ecu cmd slot param . . . param cks
N 0xC0 4 0..3

len length of telegram
ecu target address
cmd command code
slot slot number where the interface is to be configured/modified

for
param interface dependent configuration parameters
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• The real command telegram depends on the interface that is selected by the
slot.

• If no interface is selected (0), always a NOT_CONFIGURED_ERROR (0x90)
is reported with the response telegram.

• If K-Line or GPIO interface (2, 3) is configured, the following command
telegram is valid:

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu cmd slot baud/10 mode echo cks
8 0xC0 4 0..3 MSB LSB

42

UCBASE commands Configuration and Status Commands

len length of telegram
ecu target address
cmd command code
slot slot number where K-Line or GPIO interface is se-

lected
baud/10 baud rate divided by 10
mode protocol mode:

0: 8N1
1: 9N1
2: 8E1
3: 8O1

echo if 0, no special echo treatment is performed (full du-
plex line assumed). Otherwise, all characters that will
be sent, are being receive back (echo treatment, half
duplex line)

cks checksum of telegram

• if STP-on-CAN interface (6) is configured, the following command telegram
is valid:

Command (Form 1)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd slot CAN fff ext_ad
11 0xC0 4 0..3 1..4 0/1 0/1

byte 7 byte 8 byte 9 byte 10 byte 11
n_ta n_sa bsmax szmin cks

Command (Form 2, RevC1+D+E only)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd slot CAN fff ext_ad
12 0xC0 4 0..3 1..4 0/1 0/1

byte 7 byte 8 byte 9 byte 10 byte 11 byte 12
n_ta n_sa bsmax szmin fd cks

0/1

len length of telegram
ecu target address
cmd command code
slot slot number where STP-on-CAN is selected

43

UCBASE commands Configuration and Status Commands

CAN number of CAN controller that is assigned to this slot
(default: slot+1)

fff (force full frame) let send UNICOM always full CAN
messages with 8 bytes (64 bytes with enabled CAN
FD) even if not needed (default: off)

ext_ad enables Extra Addressing (first byte of every CAN
message contains an additional address value, default:
off)

n_ta Target Address with Extra Addressing
n_sa Source Address with Extra Addressing
bsmax maximum block size for STP-on-CAN protocol (0..15,

default: 0, no limit)
szmin Inter-Message Delay for STP-on-CAN (default: 0)

0x00..0x0F: delay in ms (0..15)
0x11..0x19: delay in 100 us (100..900), yields to 0xF1..0xF9
in the SZMIN field in the flow control frame
else: delay = 0
if bit 7 is set, the delay is applied while sending a tele-
gram instead of receiving, the SZMIN value that was
received with the flow control frame from the counter
part is being ignored.

fd (UNICOM3 Rev.C1,D+UNICOM4 Rev.E only) if set
greater then 0, it enables the CAN FD protocol ex-
tension of ISO15765-2 for STPonCAN. It only works
with CAN 1 or 2. The CAN controller must be ini-
tialized for CAN FD by INIT_CAN(98) command
(ref. chapter 6.4.7 on page 92), otherwise, setting is
ignored.

cks checksum of telegram

• If MODULE interface (15) is configured, the command telegram as well
as the response telegram depends on the loaded module. Further, it may
not supported by module. Please refer the module documentation for more
information.

44

UCBASE commands Configuration and Status Commands

6.1.5 UCBASE::FAST_MODE (5)

This command changes between normal communication mode and fast mode.

With normal mode, every received command telegram triggers a response tele-
gram. With fast mode, no response telegrams are being sent. UNICOM executes
all received commands without any acknowledge. If an error occurs, UNICOM
stops executing the commands but still receives them. If fast mode is stopped (by
a new FAST_MODE command), the response of last executed command telegram
(succeeded as well as failed) is being reported.

That increases data transfer from test computer to UNICOM rapidly. It should be
used mainly for copying data from test computer to UNICOM’s storage medium
(s. WRITE command, chapter 6.3.7 on page 60), but it can be used for other
commands that transfer large amount of data in this direction, e.g. implemented by
modules.

Fast Mode only works with the USB interface.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd en cks
4 0xC0 5 0,1

len length of telegram
ecu target address
cmd command code
en 0: switch into normal mode

1: switch into fast mode
cks checksum of telegram

Response (en = 1)

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

Response (en = 0)

byte 0 byte 1 byte 2 . . . byte N-1 byte N
len ecu last response cks
N xx

len length of telegram
ecu source address

45

UCBASE commands Configuration and Status Commands

status result status
last response body of response of the last executed command telegram
cks checksum of telegram

Remarks

• If a FAST_MODE command is sent to the RS232 interface, UNICOM re-
sponds with UNKNOWN_COMMAND_ERROR and keeps current mode.

46

UCBASE commands Module Command

6.2 Module Command

6.2.1 UCBASE::MODULE (20,40,41,42,43)

This command loads and starts a loadable module for UCBASE from the storage
medium or unloads it.

With UCBASE versions prior V3.5 there is only the form with command code 20
available. It loads/unloads one monolithic module which is addressable over every
interface slot that is configured for MODULE interface.

With UCBASE version equal or newer V3.5, there are 4 additional forms available:
40,41,42,43. These commands are called MULTI_MODULE. The command(s)
load/unload the module only for one slot (slot = command code - 40). That makes it
possible to load/unload 4 different modules to the same time which are addressable
over the selected interface slot (ECU number), or load up to 4 instances of the same
module that can be configured differently, or mixed variants.

Command form 1 (unload module)

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 20,40,41,42,43

Command form 2 (load module)

byte 0 byte 1 byte 2 byte 3 . . . byte x
len ecu cmd mod . . . mod
N 0xC0 20,40,41,42,43 . . .

byte y byte z . . . byte N-1 byte N
EOS param . . . param cks

0 . . .

len length of telegram
ecu target address
cmd command code
mod name of module file on storage medium
EOS End-Of-String, must be 0
param (optional) additional parameters
cks checksum of telegram

47

UCBASE commands Module Command

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• mod is the complete name of module file including the extension ".(s)mod".
A full qualified or relative path name can be used instead.

• If a new module is to be loaded and another one is already active, the MOD-
ULE command automatically unloads the previous one.

• In order to use the full module functionality, at least one of the interface slots
must be configured for MODULE using CONFIG_UNICOM(1) command
(refer chapter 6.1.1 on page 36).

• The response telegram can differ from that one which is shown above, de-
pending on module functionality. But module loading was only successful if
a status of NO_ERROR (0xA0) is reported.

• There are some specials to keep in mind when using the MULTI_MODULE
commands:

– Normally, all modules can be loaded monolithic or via MULTI_MODULE
commands. However, sometimes it makes no sense to load a module
none monolithic, e.g. if it is using many hardware parts of UNICOM,
or if it is very project specific.

– To contact the module after download with a MULTI_MODULE com-
mand, the same slot must be configured to MODULE interface as
where the module has been downloaded (e.g. slot 0 if command code
was 40, slot 1 with 41 and so on).

– A module that was resident on the addressed slot will be unloaded be-
fore. Other slots are kept untouched.

– If a MODULE(20) command is being executed, all the slots are un-
loaded, before the new monolithic module is downloaded.

– If a monolithic module is active and a MULTI_MODULE command is
being executed, the module is unloaded independently of the destina-
tion slot of the new module.

48

UCBASE commands Module Command

– Please consider the not all modules can be combined and loaded to the
same time. Since UNICOM has some hardware parts only once, there
would be access conflicts if two modules want to drive one and the
same hardware part. In order to prevent such conflicts, UCBASE has a
resource management that rejects a module that tries to use a hardware
part that is already bound to another one.

49

UCBASE commands File related Commands

6.3 File related Commands

With help of these commands, all the file functions of UCBASE can be accessed.
A file command looks like this:

Command

byte 0 byte 1 byte 2 byte 3 . . . byte N
len ecu cmd function . . . cks
N 0xC0 9, 10

len length of telegram
ecu target address
cmd command code
function file function that is selected
cks checksum of telegram

Response

Reponse telegram depends on the called file function.

Remarks

• the function parameter determines which file function is to be executed.

• the command code can be 9 or 10, for compatibility with the FFCOMBI
software on UNI-COMII+. Since UCBASE uses always long file names,
behavior of the commands 9 and 10 are exactly identical.

50

UCBASE commands File related Commands

6.3.1 UCBASE::CHECK_CARD (9, 10) - (3)

This command is for downward compatibility to the file functions of FFCOMBI on
UNI-COM II+. The command reports whether the expansion memory is formatted
for using long filenames or "8.3" filenames. UCBASE on UNICOM always uses
long file names, so the command reports always "1" with the return_val result.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd function cks
4 0xC0 9, 10 3

len length of telegram
ecu target address
cmd command code
function file function for CHECK_CARD = 3
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu status error_no return_val cks
5 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
return_val always 1 (long filenames supported)
cks checksum of telegram

51

UCBASE commands File related Commands

6.3.2 UCBASE::FORMAT (9, 10) - (15)

The FORMAT command formats the file system in the UNICOM for using with
UCBASE.

Command Form 1

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function date/time
N 0xC0 9, 10 15 MSB LSB

byte 8 . . . byte N-2 byte N-1 byte N
volume name EOS cks

0

Command Form 2, UNOCOM3 Rev.D+UNICOM4 Rev.E only

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function date/time
N 0xC0 9, 10 15 MSB LSB

byte 8 . . . byte N-3 byte N-2 bytes N-1 byte N
volume name EOS fs cks

0 0,1

len length of telegram
ecu target address
cmd command code
function file function for FORMAT = 15
date/time time stamp
volume name volume name (up to 115 characters)
EOS End-Of-String, must be 0
fs optional, UNICOM3 Rev.D+UNICOM4 Rev.E only, selectes

the file system which is to be formatted:
0: storage medium
1: RAM file system

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

52

UCBASE commands File related Commands

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

Remarks

• After FORMAT all data on the storage medium /RAM file system is lost.

• form 1 always formats the file system on storage medium.

• Formatting the RAM file system releases the lock which prevents modules
from loading into slots 1..3.

• For getting more information about RAM file system refer to chapter 3.4 on
page 30.

53

UCBASE commands File related Commands

6.3.3 UCBASE::INFO (9, 10) - (16)

The INFO command reports information about the capacity of the storage medium
and the number of free clusters.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd function cks
4 0xC0 9, 10 16

len length of telegram
ecu target address
cmd command code
function file function for INFO = 16
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu status error_no total space
12 0xC0 stat MSB LSB

byte 8 byte 9 byte 10 byte 11 byte 12
free space cks

MSB LSB

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
total space total space (in units of 512 bytes)
free space free space (in units of 512 bytes)
cks checksum of telegram

54

UCBASE commands File related Commands

6.3.4 UCBASE::OPEN (9, 10) - (21)

The OPEN command opens the file named by path. Flags specify the mode in
which the file is opened. Upon successful completion, OPEN returns the file han-
dle to be used to identify the file in subsequent operations.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function date/time
N 0xC0 9, 10 21 MSB LSB

byte 8 byte 9 byte 10 . . . byte N-2 byte N-1 byte N
flags mode path EOS cks

0

len length of telegram
ecu target address
cmd command code
function file function for OPEN = 21
date/time time stamp
flags flags for opening the file (refer to remarks)
mode mode for creating a file (refer to remarks)
path path of file
EOS End-Of-String, must be 0
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu status error_no handle cks
5 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
handle handle (in case of error: -1 = 255 (dez) = 0xFF (hex)
cks checksum of telegram

Remarks

• flags

55

UCBASE commands File related Commands

Bit code description
7..5 000 reserved, transmit as 000

4 0 open file for shared read access
1 open file with exclusive access (fails if already opened)

3 0 open file for random access
1 open file for appending data at the end of the file

2 0 open an existing file (fails if non-existing)
1 create a new file if not existing yet

1,0 00 open file for reading only
01 open file for writing only
10 open file for reading and writing
11 open directory for reading

(see READ_DIR chapter 6.3.14 on page 68)

• mode

code description
0 create file without "read-only" attribute
1 create file with "read-only" attribute

else create file without "read-only" attribute

56

UCBASE commands File related Commands

6.3.5 UCBASE::SEEK (9, 10) - (22)

The SEEK command sets the file pointer for the next access within file. Depending
on the mode, the file pointer can be set relative from the beginning of the file, the
current file pointer or the end of the file. If the function succeeds, the new position
is returned.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle mode
10 0xC0 9, 10 22

byte 6 byte 7 byte 8 byte 9 byte 10
offset cks

MSB LSB

len length of telegram
ecu target address
cmd command code
function file function for SEEK = 22
handle file handle
mode mode for seek in file (refer to remarks)
offset offset in file (signed 32-bit value)
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu status error_no position cks
8 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
position new position of file pointer
cks checksum of telegram

Remarks

• mode

57

UCBASE commands File related Commands

code description
0 from beginning of file
1 from current position
2 from end of file

else reserved, do not use

• The new file position is calculated as follows (if no error occurs):

code description
Mode = 0 new position = offset
Mode = 1 new position = old position + offset
Mode = 2 new position = size of file + offset

58

UCBASE commands File related Commands

6.3.6 UCBASE::READ (9, 10) - (23)

The READ command reads data from the file addressed by a handle. The requested
data is sent in the response telegram. The number of data read may be less than
requested if the end of file is reached.

Command (form 1)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd function handle count cks
6 0xC0 9, 10 23

Command (form 2)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function handle count cks
7 0xC0 9, 10 23 MSB LSB

len length of telegram
ecu target address
cmd command code
function file function for READ = 23
handle file handle
count number of data to read (up to 251 bytes with STP protocol,

up to 4091 byte with XSTP protocol)
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-1 byte N
len ecu status error_no data 1 . . . data n cks
N 0xC0 stat . . .

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
data read data
cks checksum of telegram

59

UCBASE commands File related Commands

6.3.7 UCBASE::WRITE (9, 10) - (24)

The WRITE command writes data to an open file, which is addressed by a handle.
The data to be written is sent to the file system within the command telegram.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function date/time
N 0xC0 9, 10 24 MSB LSB

byte 8 byte 9 . . . byte N-1 byte N
handle data 1 . . . data n cks

. . .

len length of telegram
ecu target address
cmd command code
function file function for WRITE = 24
date/time time stamp
handle file handle
data data to write (up to 246 bytes with STP protocol, up to 4086

bytes with XSTP protocol)
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

60

UCBASE commands File related Commands

6.3.8 UCBASE::CLOSE (9, 10) - (26)

The CLOSE command closes the file specified by a handle. All internal buffers
belonging to this file are written and the directory entry is updated. The handle is
invalid after CLOSE.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle cks
5 0xC0 9, 10 26

len length of telegram
ecu target address
cmd command code
function file function for CLOSE = 26
handle file handle
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

61

UCBASE commands File related Commands

6.3.9 UCBASE::DELETE (9, 10) - (30)

The DELETE command deletes the specified file.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-2 byte N-1 byte N
len ecu cmd function path EOS cks
N 0xC0 9, 10 30 0

len length of telegram
ecu target address
cmd command code
function file function for DELETE = 30
path path of file
EOS End-Of-String, must be 0
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

Remarks

• A file with "read-only" attribute cannot be deleted.

62

UCBASE commands File related Commands

6.3.10 UCBASE::GET_DIR (9, 10) - (42)

The GET_DIR command reports the current working directory.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd function cks
4 0xC0 9, 10 42

len length of telegram
ecu target address
cmd command code
function file function for GET_DIR = 42
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-2 byte N-1 byte N
len ecu status error_no path EOS cks
N 0xC0 stat 0

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
path full path name of current directory
EOS End-Of-String, must be 0
cks checksum of telegram

63

UCBASE commands File related Commands

6.3.11 UCBASE::CHANGE_DIR (9, 10) - (43)

The CHANGE_DIR command changes the current working directory.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-2 byte N-1 byte N
len ecu cmd function path EOS cks
N 0xC0 9, 10 43 0

len length of telegram
ecu target address
cmd command code
function file function for CHANGE_DIR = 43
path full or relative path name of new current directory
EOS End-Of-String, must be 0
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

Remarks

• The command can also be used to change the default file system: placing
"a:" in front of path selects the file system on storage medium, "b:" the file
system on RAM. That works only with UNICOM3 Rev.D and UNICOM4
Rev.E.

• Refer to chapter 3.4 on page 30

64

UCBASE commands File related Commands

6.3.12 UCBASE::MAKE_DIR (9, 10) - (44)

The MAKE_DIR command creates a new directory on the file system.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function date/time
N 0xC0 9, 10 44 MSB LSB

byte 8 byte 9 . . . byte N-2 byte N-1 byte N
mode path EOS cks

0

len length of telegram
ecu target address
cmd command code
function file function for MAKE_DIR = 44
date/time time stamp
mode mode for creating a file (refer to remarks)
path path of new directory
EOS End-Of-String, must be 0
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

65

UCBASE commands File related Commands

Remarks

• mode

code description
0 create file without "read-only" attribute
1 create file with "read-only" attribute

else create file without "read-only" attribute

• The directory where the new subdirectory is to be placed must already exist.

66

UCBASE commands File related Commands

6.3.13 UCBASE::REMOVE_DIR (9, 10) - (45)

The REMOVE_DIR command removes the specified directory.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-2 byte N-1 byte N
len ecu cmd function path EOS cks
N 0xC0 9, 10 45 0

len length of telegram
ecu target address
cmd command code
function file function for REMOVE_DIR = 45
path path of file
EOS End-Of-String, must be 0
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

67

UCBASE commands File related Commands

6.3.14 UCBASE::READ_DIR (9, 10) - (47)

The READ_DIR command reads one directory entry from a directory specified by
a handle.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle cks
5 0xC0 9, 10 47

len length of telegram
ecu target address
cmd command code
function file function for READ_DIR = 47
handle handle of directory entry
cks checksum of telegram

Response with directory entry

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu status error_no date/time
N 0xC0 stat MSB LSB

byte 8 byte 9 byte 10 byte 11 byte 12
size attribute

MSB LSB

byte 13 . . . byte N-2 byte N-1 byte N
filename EOS cks

0

68

UCBASE commands File related Commands

Response at end of directory (no entry)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
date/time time stamp that was specified with creation / modification

of the file
size size of file
attribute attribute (refer to remarks)
filename name of file (variable length, max 115 bytes)
EOS End-Of-String, must be 0
cks checksum of telegram

Remarks

• The function OPEN (chapter 6.3.4 on page 55) is used to get a handle for a
directory. The function SEEK (chapter 6.3.5 on page 57) is not applicable
for directory entries. Directory entries of deleted files are not returned.

• attribute

Bit code description
7 0 reserved, transmitted as 0
6 0 reserved, transmitted as 0
5 set to 1 if entry has "archive" attribute
4 set to 1 if entry specifies a directory
3 set to 1 if entry specifies a volume label
2 set to 1 if entry has "system" attribute
1 set to 1 if entry has "hidden" attribute
0 set to 1 if entry has "read-only" attribute

69

UCBASE commands File related Commands

6.3.15 UCBASE::FILL (9, 10) - (57)

The FILL command writes a given data byte into a file in the given range between
start offset and end offset.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd function date/time
18 0xC0 9, 10 57 MSB LSB

byte 8 byte 9 byte 10 byte 11 byte 12 byte 13
handle data byte s_offset

MSB LSB

byte 14 byte 15 byte 16 byte 17 byte 18
e_offset cks

MSB LSB

len length of telegram
ecu target address
cmd command code
function file function for FILL = 57
date/time time stamp
handle handle of file
data byte data byte for filling
s_offset start offset
e_offset end offset
cks checksum of telegram

Response with directory entry

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status error_no cks
4 0xC0 stat

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
cks checksum of telegram

70

UCBASE commands File related Commands

Remarks

• The execution time for this function depends on the size of the given range.

• If the file is shorter than the given range, the file will be expanded.

71

UCBASE commands File related Commands

6.3.16 UCBASE::CHECK (9, 10) - (58)

The CHECK command calculates a CSM_CRC16 over a given range in a file.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle dummy
14 0xC0 9, 10 58 0

byte 6 byte 7 byte 8 byte 9
s_offset

MSB LSB

byte 10 byte 11 byte 12 byte 13 byte 14
e_offset cks

MSB LSB

len length of telegram
ecu target address
cmd command code
function file function for CHECK = 58
handle handle of file
dummy not used, should be 0
s_offset start offset
e_offset end offset, if 0, up to end of file.
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu status error_no CRC16 cks
6 0xC0 stat MSB LSB

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
CRC16 CRC value (16bit)
cks checksum of telegram

72

UCBASE commands File related Commands

Remarks

• The algorithm which is used for CRC calculation is described in the CHECK_CRC
chapter (ref.chapter 6.3.18 on page 79).

73

UCBASE commands File related Commands

6.3.17 UCBASE::CHECK32 (9, 10) - (59)

The CHECK32 command calculates a CCITT_CRC32 over a given range in a file.
If end offset is zero, the calculation is performed up to the end of file.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle dummy
14 0xC0 9, 10 59 0

byte 6 byte 7 byte 8 byte 9
s_offset

MSB LSB

byte 10 byte 11 byte 12 byte 13 byte 14
e_offset cks

MSB LSB

len length of telegram
ecu target address
cmd command code
function file function for CHECK32 = 59
handle handle of file
dummy not used, should be 0
s_offset start offset
e_offset end offset, if 0, up to end of file.
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status error_no
8 0xC0 stat

byte 4 byte 5 byte 6 byte 7 byte 8
CRC32 cks

MSB LSB

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
CRC32 CRC value (32bit)

74

UCBASE commands File related Commands

cks checksum of telegram

Remarks

• The algorithm which is used for CRC calculation is described in the CHECK_CRC
chapter (ref.chapter 6.3.18 on page 79).

75

UCBASE commands File related Commands

6.3.18 UCBASE::CHECK_CRC (9, 10) - (60)

This command can compute different types of CRCs over files with different type
(BINARY, SRECORD, INTEL HEX). It supports pre-defined CRC types as CSM_-
CRC16, CCITT_CRC32, RH850_CRC32 and more, and it supports also to specify
almost all parameters for CRC computation in a free-style way.

Command, form 1, RH850_CRC32

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle f_type
14 0xC0 9, 10 60 0,4,8

byte 6 byte 7 byte 8 byte 9
s_offset

MSB LSB

byte 10 byte 11 byte 12 byte 13 byte 14
e_offset cks

MSB LSB

Command, form 2, pre-defined CRCs

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle f_type
15 0xC0 9, 10 60 0,4,8

byte 6 byte 7 byte 8 byte 9
s_offset

MSB LSB

byte 10 byte 11 byte 12 byte 13 byte 14 byte 15
e_offset crc_type cks

MSB LSB

Command, form 3, free-style CRCs

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd function handle f_type
29 0xC0 9, 10 60 0,4,8

byte 6 byte 7 byte 8 byte 9 byte 10 byte 11 byte 12 byte 13
s_offset e_offset

MSB LSB MSB LSB

76

UCBASE commands File related Commands

byte 14 byte 15 byte 16 byte 17 byte 18
width poly
8..32 MSB LSB

byte 19 byte 20 byte 21 byte 22 byte 23 byte 24
init refin refot

MSB LSB

byte 25 byte 26 byte 27 byte 28 byte 29
xorot crc

MSB LSB

len length of telegram
ecu target address
cmd command code
function file function for CHECK_CRC = 60
handle handle of file
f_type 0: BINARY file, 4: SRECORD file, 8: INTEL HEX file
s_offset start offset
e_offset end offset, if 0, up to end of file.
crc_type 0: CSM_CRC16

1: CCITT_CRC32
2: RH850_CRC32
3: XCP_CRC16
4: CCITT_CRC16

width width of CRC to be computed (8..32 bits)
poly polynomial, number of bits to be involved into crc compu-

tation is equal to width
init initial value, number of bits to be involved into crc compu-

tation is equal to width
refin when > 0, input is reflected
refot when > 0, output is reflected
xorot value that is finally XORed to the result, number of bits to

be involved into crc computation is equal to width
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-1 byte N
len ecu status error_no crc 1 . . . crc n cks

N=4+n 0xC0 MSB . . . LSB

77

UCBASE commands File related Commands

len length of telegram
ecu source address
status result status
error_no error number (refer chapter 6.3.19 on page 80)
crc resulting crc value. Number of bytes corresponds to the

width parameter.
cks checksum of telegram

Remarks

• With form 1 and f_type = 0, this command computes the RH850_CRC32
over a binary file. This command form is compatible with CHECK and
CHECK32 command (ref. chapter 6.3.16 on page 72, chapter 6.3.17 on
page 74).

• If file type SRECORD or INTEL HEX is selected, the s_offset and e_offset
are interpreted as address range. Only data from file that fits with this range
is used for CRC calculation. If both parameters are set to 0, the entire file is
used.

• The following table shows parameters of the pre-defined CRC algorithms

78

UCBASE commands File related Commands

N
am

e
cr

c_
ty

pe
W

id
th

Po
ly

In
it

R
ef

In
R

ef
O

t
X

or
O

t
C

SM
_C

R
C

16
0

16
0x

80
05

a
0x

C
A

C
2

b
T

R
U

E
T

R
U

E
0x

00
00

C
C

IT
T

_C
R

C
32

1
32

0x
04

C
11

D
B

7
0x

FF
FF

FF
FF

T
R

U
E

T
R

U
E

0x
FF

FF
FF

FF
R

H
85

0_
C

R
C

32
2

32
0x

04
C

11
D

B
7

0x
FF

FF
FF

FF
FA

L
SE

FA
L

SE
0x

00
00

00
00

X
C

P_
C

R
C

16
3

16
0x

80
05

0x
00

00
T

R
U

E
T

R
U

E
0x

00
00

C
C

IT
T

_C
R

C
16

4
16

0x
10

21
0x

FF
FF

FA
L

SE
FA

L
SE

0x
00

00

a 0x
A

00
1

re
fle

ct
ed

b 0x
43

53
re

fle
ct

ed

79

UCBASE commands File related Commands

6.3.19 Error codes of file commands

The following table shows possible error codes that can be reported with error_no
with the file commands, and their meaning.

Error Code Description
ENOENT 4 path/file not found
EINVACC 3 illegal access-code
EVERIFY 9 error occurs at the Verify of written data
EBADNAME 6 specified name has illegal format
EBADSLOT 7 specified slot not valid
ENOSPACE 8 no more space on the data medium
EBADF 5 illegal handle
EFORMAT 10 Card probably is not formatted
EACCES 1 access not allowed
EMFILE 3 too many files open files
GenERROR 20 unknown error occurred
HardwareBAD 21 the hardware of the slot doesn’t work
NoSuchSLOT 22 specified slot doesn’t exist physically
NoCARD 23 there is no card inserted in the slot
HeaderBAD 24 the header is inconsistent
SektorBAD 25 a sector could not be processed
UnknownMEMORY 26 the storage-type of the card is unknown and

can not be processed
EraseERROR 27 an error occurred during delete
NotEnoughMEMORY 28 the system doesn’t provide the requested

memory
WriteCardERROR 29 an error occurred on writing to the card
WritePROT 30 writing: the card is write protected
ReadCardERROR 31 an error occurred on reading from the card

80

UCBASE commands CAN Commands

6.4 CAN Commands

6.4.1 UCBASE::ADJUST_FILLBYTES (92)

With help of this command, the value of fill byte that is used for padding the CAN
messages with STPonCAN or UDS over CAN when force full frame is selected
(see CONFIG_INTERFACE(4) command, chapter 6.1.4 on page 42). The default
value is 0x55.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd fb cks
4 0xC0 92

len length of telegram
ecu target address
cmd command code
fb value for fill byte
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• Refer to CONFIG_INTERFACE (chapter 6.1.4 on page 42).

81

UCBASE commands CAN Commands

6.4.2 UCBASE::CAN_FILTER (93)

This command allows definition of filters that can allow or deny reception of CAN
messages depending on the CAN Identifier.

Command (form 1, define filters)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu cmd CAN policy filt1

N=5+4*n 0xC0 93 1..4 1, 0 MSB LSB

. . . byte N-4 byte N-3 byte N-2 byte N-1 byte N
. . . filtn cks
. . . MSB LSB

Command (form 2, clear filters)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd CAN cks
4 0xC0 93 1..4

len length of telegram
ecu target address
cmd command code
CAN Number of CAN
Policy Defines behavior in case of matching filter:

0: deny reception if filter matches
else: accept reception if filter matches

Filtx Filter CAN Identifier
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

82

UCBASE commands CAN Commands

Remarks

• With form 1, the command can define up to 8 filter CAN identifier which
are being used to filter out CAN reception messages with the specified CAN
identifier. Policy defines whether a CAN message with a matching filter
identifier is to be denied (black list) or accepted (white list).

• Before the new filters are being set active, an existing old filter set is re-
moved. Consequently, if no new filters are defined with the command, only
the existing filters are being removed (form 2).

• Defining filters is an additional mechanism for CAN message filtering after
that one with the arbitration mask (s. INIT_CAN, chapter 6.4.7 on page 92).

83

UCBASE commands CAN Commands

6.4.3 UCBASE::CAN_CONFIG (94)

This command switches CAN Transceivers, termination, measure lines and error
conditions.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd CAN type tristate
11 0xC0 94 1..4 0..4 0,1

byte 6 byte 7 byte 8 byte 9 byte 10 byte 11
term test sGND sUBATT mode cks
0,120 0,1 0,1 0,1 0,1,2,3

len length of telegram
ecu target address
cmd command code
CAN number of CAN
type 0 = High Speed, 1 = Low Speed, 3 = Single Wire CAN (not

UNICOM3 Rev.C1), 4 = GPIO
tristate 0 = CAN connected, 1 = CAN disconnected
term 0 = off, 120 = 120 Ohms
test 0 = disconnect measure lines, 1 = connect measure lines
sGND 0 = no function, 1 = connect CAN_H to GND
sUBATT 0 = no function, 1 = connect CAN_L to UBATT
mode controls mode of either GPIO or Single Wire CAN if se-

lected:
GPIO: (UNICOM3 Rev.C1,D and UNICOM4 Rev.E only)

0 = transceiver emulation as normal
1 = transceiver emulation suppressed

Single Wire CAN:
0 = Sleep Mode, 1 = High Speed Mode,
2 = High Voltage Wakeup, 3 = Normal Mode

With other CAN types this parameter is ignored.
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

84

UCBASE commands CAN Commands

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• Only CAN 1 has the full functionality specified above

• With CAN 2, test, sGND, sUBATT must be set to 0. On UNICOM3 Rev.D
and UNICOM4 Rev.E, it can be mapped also to the Single Wire CAN transceiver.

• CAN 3 and 4 can only be mapped to GPIOs with this command. On UNI-
COM3 Rev.D and UNICOM4 Rev.E, it can be mapped also to the Single
Wire CAN transceiver.

• Single Wire CAN is connected to a separate pin on the DSUB62 connector.
tristate, term, test, sGND and sUBATT have no effect with Single Wire.

• Be sure not to map more then one CAN to Single Wire, it would result in a
CAN_IN_USE(0xC1) error. First map the second CAN to another type in
this case.

• There is a fixed mapping when CANs are routed to GPIOs:
CAN1: GPIO1=TxD, GPIO5=RxD
CAN2: GPIO2=TxD, GPIO6=RxD
CAN3: GPIO3=TxD, GPIO7=RxD
CAN4: GPIO4=TxD, GPIO8=RxD
The GPIOs can directly connected to the TTL pins of target:
RxD->TxD Target
TxD->RxD Target

• If CAN1 or CAN2 is configured for CAN FD protocol and the type param-
eter is set to other then 0 (High Speed) for one of these CANs, an error
occurs. First configure the CAN for none-FD using INIT_CAN(98) (ref.
chapter 6.4.7 on page 92). UNICOM3 Rev.C1 and D only.

85

UCBASE commands CAN Commands

6.4.4 UCBASE::CLEAR_CAN (95)

This command re-initializes the selected CAN controller and clears the CAN FIFO
and the time stamp counter.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd CAN fifo time cks
6 0xC0 95 1..4 0/1 0/1

len length of telegram
ecu target address
cmd command code
CAN Number of CAN
fifo if 1, content of CAN FIFO is cleared
time if 1, time stamp counter is reset
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

86

UCBASE commands CAN Commands

6.4.5 UCBASE::SEND_CAN (96)

With help of this command, single CAN messages can be sent, or a cyclical CAN
message can be installed or de-installed.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd CAN Period
N 0xC0 96 1..4 MSB LSB

byte 6 byte 7 byte 8 byte 9 byte 10 . . . byte N-1 byte N
CAN ID data . . . data cks

MSB LSB . . .

len length of telegram
ecu target address
cmd command code
CAN Number of CAN
Period = 0: CAN message is sent immediately and once.

> 0: it is the send period in ms.
CAN ID CAN identifier. If bit 31 of that 32 bit value is set to 1, the

opposite frame size as configured with the INIT_CAN(98)
command is being used. If this parameter is set to 0xFFFFFFFF,
the pre-configured SEND ID is used for sending (ref. INIT_CAN(98),
chapter 6.4.7 on page 92).

data data bytes which are sent with the message (max. 8). If
the CAN is configured for CAN FD, up to 64 bytes can be
applied (UNICOM3 Rev.C1, D and UNICOM4 Rev.E only)

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

87

UCBASE commands CAN Commands

Remarks

• If the period parameter is set > 0, a cyclical message is being prepared. If
another cyclical message with equal ID and frame size is already active, it is
being stopped before.

• If the period parameter is set to 0, the message is being sent once (single
message). If a cyclical message with equal ID and frame size is already
active, it is being stopped and nothing is sent.

• Up to 64 cyclical messages, sent by different CAN buses, and with different
CAN IDs or frame sizes may be configured. If tried to configure more than
64, a CAN_MESSAGE_LOST error (0xCE) is being reported.

• With the special meaning of bit 31 of the CAN ID parameter it is possible to
send CAN messages with a different frame size as to receive. For example,
if the frame size is set to 11 by using the INIT_CAN(98) command (refer
chapter 6.4.7 on page 92), messages may be sent with the 29 bit frame size
by setting the bit 31 of the CAN ID parameter. The response should come
with 11 bit frame size from the counter part.

• Keep in mind that only a limited number of messages can be sent over the
CAN bus within one millisecond (the smallest possible period). This number
of messages depends on the determined CAN bitrate. If more messages
should be sent within one ms, UCBASE only sends as much as possible.

88

UCBASE commands CAN Commands

6.4.6 UCBASE::RECEIVE_CAN (97)

This command checks whether UNICOM has received a CAN message since the
last time when this command was executed, and reports the content.

Command (standard)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd CAN cks
N 0xC0 97 1..4

Command (extended)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd CAN opt msgs cks
6 0xC0 97 1..4

len length of telegram
ecu target address
cmd command code
CAN Number of CAN
opt (with extended form only)

bit 0 = 1: hide time stamp in response
bit 1 = 1: hide CAN ID in response
bit 2 = 1: hide overflow entries

msgs (with extended form only), maximum number of messages
in response telegram.

cks checksum of telegram

Response, no message received

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

Response, message received, standard

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu status time
N 0xC0 MSB LSB

byte 7 byte 8 byte 9 byte 10 byte 11 . . . byte N-1 byte N
ID data . . . data cks

MSB LSB . . .

89

UCBASE commands CAN Commands

Response, message received, extended

byte 0 byte 1 byte 2 byte 3 . . . byte 6 byte 7 . . . byte 10
len ecu status time 1 ID 1
N 0xC0 MSB . . . LSB MSB . . . LSB

byte 11 byte 10 . . . byte x
len 1 data 1

. . .

.
.
.

byte x . . . byte x byte x . . . byte x
time n ID n

MSB . . . LSB MSB . . . LSB

byte x byte x . . . byte N-1 byte N
len n data n

. . . cks

len length of telegram
ecu source address
status result status
time (x) time in ms after last reset (refer chapter 6.4.4 on page 86)
ID (x) CAN ID of received message
len (x) (with extended form only) number of following data bytes
data (x) data bytes of received message (max. 8) If the CAN is con-

figured for CAN FD, up to 64 bytes can be reported (UNI-
COM3 Rev.C1, D and UNICOM4 Rev.E only)

cks checksum of telegram

Remarks

• Only such messages can be received which CAN ID matches with the arbi-
tration rules that are defines with the INIT_CAN(98) command (refer chap-
ter 6.4.7 on page 92), and according to the filter rules, defined with CAN_-
FILTER command (refer chapter 6.4.2 on page 82).

• if a receive fifo overflow has been occurred, a pseudo response message with
time = 0xFFFFFFFF and ID = 0xFFFFFFFF, without data is being reported.
This can be hidden in the extended form by setting bit 2 in the opt parameter
to high.

90

UCBASE commands CAN Commands

• If msgs is specified 0, UNICOM reports maximum possible number of re-
ceived CAN messages, limited only by the number of received messages that
are stored in its FIFO and the size of response telegram.

91

UCBASE commands CAN Commands

6.4.7 UCBASE::INIT_CAN (98)

With this command, the CAN controllers of UNICOM can be initialized.

Command, form 1 (using defaults)

byte 0 byte 1 byte 2 byte 3
len ecu cmd CAN
10 0xC0 98 0..4

byte 4 . . . byte 7 byte 8 byte 9 byte 10
bitrate jw fs cks

MSB LSB 1..4 11/29

Command, form 2 (full)

byte 0 byte 1 byte 2 byte 3
len ecu cmd CAN
22 0xC0 98 0..4

byte 4 . . . byte 7 byte 8 byte 9 byte 10 . . . byte 13
bitrate jw fs Send ID

MSB . . . LSB 1..4 11/29 MSB . . . LSB

byte 14 . . . byte 17 byte 18 . . . byte 21 byte 22
Receive ID Mask cks

MSB . . . LSB MSB . . . LSB

Command, form 3 (full, with FD parameters, UNICOM3 Rev.C1,D and UNI-
COM4 Rev.E only, with bitrate not 0)

byte 0 byte 1 byte 2 byte 3
len ecu cmd CAN
28 0xC0 98 0..4

byte 4 . . . byte 7 byte 8 byte 9 byte 10 . . . byte 13
bitrate jw fs Send ID

MSB . . . LSB 1..4 11/29 MSB . . . LSB

byte 14 . . . byte 17 byte 18 . . . byte 21
Receive ID Mask

MSB . . . LSB MSB . . . LSB

byte 22 byte 23 byte 24 . . . byte 27 byte 28
fd iso bitrate fd cks
0/1 0/1 MSB . . . MSB

92

UCBASE commands CAN Commands

len length of telegram
ecu target address
cmd command code
CAN Number of CAN controller. CAN 0 is a virtual CAN con-

troller. This data is only be used with FASTFLASH. CAN
1..4 are physical CAN controllers

bitrate Nominal CAN bitrate. If 0, bitrate is not changed but IDs,
Mask and Frame Size

jw synchronization jump width. Must be 0 if bitrate is 0.
fs frame size
Send ID CAN Send ID (for STP-on-CAN)
Receive ID CAN Receive ID
Mask Arbitration Mask
fd 0: standard CAN protocol, 1: CAN FD protocol
iso 0: none iso fd protocol, 1: iso fd protocol
bitrate fd Data bitrate for the fast part in fd mode. If 0, no bitrate

switching is performed but, however, fd protocol is used as
specified with fd.

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• With UNICOM3 Rev.C1, D and UNICOM4 Rev.E, the lowest possible bi-
trate is 6.25 kBits/s. With earlier revisions, the lowest possible bitrate is 37.5
kBits/s.

• After executing the command, the CAN controller can receive CAN mes-
sages with the specified Receive ID. Mask determines, which bits of a re-
ceived CAN ID must match with Receive ID. A high bit in Mask means
"must match", a low bit means "don’t care". Consequently, with a Mask

93

UCBASE commands CAN Commands

value of 0, every CAN message with matching frame size can be received
independently from the specified Receive ID.

• The command resets time counting and FIFOs of corresponding CAN con-
troller.

• If bit 31 of the bitrate parameter is set, bits 29 down to 0 of this parameter are
being stored directly into the bitrate register of CAN module of UNICOM
(raw configuration). Bit fields of bitrate register. Bit 30 specified which type
of CAN controller should be configured, 1: CAN FD controller, 0: standard
CAN controller. Both of CAN controllers have different register layout.

– Standard CAN controller

bit 0..5: Prescaler-1
bit 6..7: Jump Width -1
bit 8..11: TSEG1 -1
bit 12..14: TSEG2 -1
bit 15: S3
bit 29: Div8, if 1, an additional prescaler of 8:1 is ac-

tivated (UNICOM3 Rev.C1, D and UNICOM4
Rev.E only)

– CAN FD controller

bit 0..5: Prescaler-1
bit 6..11: TSEG1 -1
bit 12..15: TSEG2 -1

Consider that input clock of the CAN module is 60 MHz (UNICOM3 Rev.Cx),
80 MHz (UNICOM3 Rev.D) resp. 100 MHz (UNICOM4 Rev.E)!

• FD protocol only can applied at CAN1 and CAN2 in highspeed mode (type
= 0, ref CAN_CONFIG(94), chapter 6.4.3 on page 84) on Rev.C1 and Rev.D
only. On UNICOM4 Rev.E, all CANs support CAN FD.

• If bitrate is set to 0, only Frame Size, Mask and IDs will be changed. This
mode avoids reset of the CAN controller. It ensures that CAN controller
continuously responds ACK bits if it receives a valid CAN message even
while this command runs. However, time counting and FIFOs are reset by
the command.

94

UCBASE commands CAN Commands

6.4.8 UCBASE::MODIFY_CAN (100)

This command allows the modification of cyclic CAN messages (see SEND_CAN,
chapter 6.4.5 on page 87 with period > 0).

Command (clear rule)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd CAN rule cks
5 0xC0 100 1..4 0..63

Command (define rule), for standard CAN

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 . . . byte 8
len ecu cmd CAN rule ID

17/18 0xC0 100 1..4 0..63 MSB . . . LSB

byte 9 byte 10 byte 11 byte 12 byte 13
op pos start end arg

byte 14 byte 15 byte 16 byte 17 byte 18
cks op cks pos cks mask chkarg cks

Command (define rule), for CAN FD (UNICOM3 Rev.C1, D and UNICOM4
Rev.E only)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 . . . byte 8
len ecu cmd CAN rule ID

24/25 0xC0 100 1..4 0..63 MSB . . . LSB

byte 9 byte 10 byte 11 byte 12 byte 13
op pos start end arg

byte 14 byte 15 byte 16 . . . byte 23 byte 24 byte 25
cks op cks pos cks mask chkarg cks

MSB . . . LSB

len length of telegram
ecu target address
cmd command code
CAN number of CAN where the rule is to be assigned (dummy

for clear form)
rule number of rule to be defined

95

UCBASE commands CAN Commands

ID ID of cyclical message where the rule should assigned
op defines the operation performed to modify a data byte

0 (NOP): do nothing (rule defines checksum algorithm only)
1 (XOR): databyte = databyte XOR arg
2 (ADD): databyte = databyte PLUS arg

pos position of data byte in CAN message (0..7 UNICOM3 Rev.C,
0..63 UNICOM3 Rev.C1, D and UNICOM4 Rev.E)

start minimum value of modified byte
end maximum value of modified byte. If this value is exceeded,

data byte is set to the start value.
arg argument used for operation
chk op defines the checksum algorithm used

0 (NOP): do nothing (rule defines a byte operation only)
1 (XOR): XOR all data bytes involved
2 (IADD): ADD all data bytes involved, the bit-invert the
result
3 (CRC8): CRC8 over all involved data bytes (see remarks)
4 (CRC8GRP): as 3, but chkarg parameter is involved addi-
tionally

chk pos position of checksum byte in CAN message (0..7 UNICOM3
Rev.C, 0..63 UNICOM3 Rev.C1, D and UNICOM4 Rev.E)

chk mask mask to indicate the data bytes involved in checksum algo-
rithm Bit<n> corresponds to data byte n in the CAN mes-
sage. With standard CAN, an 8-bit mask is used, with CAN
FD, the mask is 64 bits in size.

chkarg signal group parameter. Only with chk op = 4!
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

96

UCBASE commands CAN Commands

Remarks

• The modification rules are applied on cyclic transmit messages BEFORE
they are sent

• Define the rules prior the SEND_CAN command to avoid sending unmodi-
fied messages.

97

UCBASE commands CAN Commands

6.4.9 UCBASE::STATUS_CAN (102)

This command reports content of the status register of the selected CAN controller.
For debug purpose only.

Command, standard form

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd CAN cks
4 0xC0 102 1..4

Command, extended form

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd CAN cfg cks
5 0xC0 102 1..4 0, 1

len length of telegram
ecu target address
cmd command code
CAN Number of CAN controller (1..4)
cfg 0: same as standard form

1: timing registers for normal and data bitrate will be re-
ported in response telegram

cks checksum of telegram

Response, standard form or with cfg = 0

byte 0 byte 1 byte 2 byte 3 . . . byte 6 byte 7
len ecu status CAN SREG cks
7 0xC0 MSB . . . LSB

Response, with cfg = 1

byte 0 byte 1 byte 2 byte 3 . . . byte 6
len ecu status CAN SREG
15 0xC0 MSB . . . LSB

byte 7 . . . byte 10 byte 11 . . . byte 14 byte 15
BR reg Data BR Reg cks

MSB . . . LSB MSB . . . LSB

len length of telegram
ecu source address
status result status

98

UCBASE commands CAN Commands

CAN SREG content of CAN status register:
bit 0..15 0 (reseved)
bit 16 0: Controller off, 1: Controller active
bit 17..25 0 (reserved)
bit 26 1: Error Passive
bit 27 1: Bus Off
bit 28 1: Transmit FIFO full (could not send)
bit 29 1: currently transmitting a message
bit 30 1: currently receiving a message
bit 31 1: at least one message in hardware

FIFO
bit 31 = 1 should never occur because UCBASE imme-
diately reads received message from hardware FIFO and
copies it into the software FIFO from where it can be read
with the RECEIVE_CAN(97) command (s. chapter 6.4.6
on page 89).

BR Setting of (nominal) Bitrate Register. For more info refer to
chapter INIT_CAN(98) (ref. chapter 6.4.7 on page 92) and
its remarks, as well as remarks below.

Data BR Setting of Data Bitrate Register. 0 if CAN doesn’t support
CAN FD, or it is configured in standard mode.

cks checksum of telegram

Remarks

• Due to developement history of UNICOM3 and 4, there are different CAN
Controller types used on different UNICOM revisions. Please keep in mind
this if you evaluate the value of reported bitrate register.

– On UNICOM3 Rev.C, there are only Standard CAN Controllers.

– On UNICOM3 Rev.D, CAN 1 HS and CAN 2 HS are realized by CAN
FD Controllers, even if they are configured in standard mode. All other
CANs are Standard Controllers.

– On UNICOM3 Rev.C1 and UNICOM4 Rev.E, only CAN FD Con-
trollers are used, even if they are working in standard mode.

99

UCBASE commands CAN Commands

6.4.10 UCBASE::MULTIPLEX_CAN (103)

This command allows several sets of data bytes in cyclic CAN messages (see
SEND_CAN with period > 0, chapter 6.4.5 on page 87).

A multiplex message is a cyclic CAN message with one identifier, but different data
bytes. The data bytes are pre-defined using the MULTIPLEX_CAN command.
The data bytes are copied into the CAN message before transmission. For the next
transmission, the next data bytes are used. When the end of pre-defined data bytes
is reached, UCBASE starts again at the beginning of the data bytes.

UCBASE software compares the ID of each CAN transmit message with the IDs
given in the multiplex rule. If the ID matches, the copy operation is executed.
After that, message is being sent with the data bytes just copied. With the extended
form of this command it is possible to define self-terminating rules and repetition
of messages with equal data.

Command (form 1, delete rule)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd CAN rule cks
5 0xC0 103 1..4 0..7

Command (form 2, define rule, standard)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu cmd CAN rule ID
N 0xC0 103 1..4 0..7 MSB LSB

byte 9 byte 10 . . . byte N-1 byte N
datalen data . . . data cks
1..max . . .

Command (form 3, define rule, extended)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu cmd CAN rule ID
N 0xC0 103 1..4 0..7 MSB LSB

byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 . . . byte N-1 byte N
ext xlen xcount xfactor dummy data . . . data cks
0 1..max 0 . . .

len length of telegram
ecu target address

100

UCBASE commands CAN Commands

cmd command code
CAN Number of CAN
rule number of rule to disable (Form 1) or define (Form 2,3)

There are up to eight rules, so rule is between 0 and 7
ID CAN identifier for the rule. If bit 31 of that 32 bit value is

1, the opposite frame size is used (s. SEND_CAN, chap-
ter 6.4.5 on page 87))

datalen defines the number of bytes in the multiplex message. If
this parameter is 0, the extended form (form 3) is assumed.
max depends on whether the CAN is configured for standard
CAN protocol (8) or CAN FD protocol (64) (UNICOM3
Rev.C1, D and UNICOM4 Rev.E only).

xlen number of data bytes per message for the extended form
(form 3), equal to datalen in form 2)

xcount This parameter determines whether the rule is eternal like
defined with form 2 (xcount = 0) or self terminating. In this
case, this parameter contains the total amount of messages
to be sent with this rule.

xfactor number of equal messages which are being sent without
multiplexing to the next data. Must be greater then 0.

dummy for downward compatibility to FFCOMBI (synchronizing is
not supported by UCBASE). Should be 0.

data list of data bytes
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• Datalen specifies the bytes to be copied by MULTIPLEX_CAN. The number
of bytes actually sent in the CAN message is specified with the SEND_CAN
command (s. chapter 6.4.5 on page 87). For normal usage, it is recom-
mended to use the same number of data bytes in both commands. If datalen

101

UCBASE commands CAN Commands

is smaller than the bytes sent, only the first bytes are multiplexed while the
remaining data bytes in the CAN message remain unchanged.

• The number of databytes must be a multiple of datalen. A PARAMETER_ER-
ROR is reported otherwise. The number of data bytes is only limited by the
telegram length.

• A list of L databytes consists of M sets of data (M = L / datalen). Each set of
data is used for one instance of the multiplexed message. For example, if 40
data bytes are specified with datalen = 8, there are five different messages:
instance 1: databyte 0 . . . databyte7
instance 2: databyte 8 . . . databyte15
. . .
instance 5: databyte 32 . . . databyte 39

• If a self terminating rule has been defined, UCBASE sends exactly the num-
ber of CAN messages which has been defined with xcount. After that,
the rule and the corresponding cyclical CAN message are disabled. To re-
activate the rule, it must be defined new using the MULTIPLEX_CAN com-
mand, followed by a SEND_CAN command.

102

UCBASE commands CAN Commands

6.4.11 UCBASE::SEND_CANFD (104)

(UNICOM3 Rev.C1, D and UNICOM4 Rev.E only)

Similar to SEND_CAN(96) (ref. chapter 6.4.5 on page 87), this command sends
one CAN message or defines/disables one cyclical CAN message. When con-
cerning CAN controller is configured for CAN FD, Bit Rate Switching and/or FD
messgae format can be suppressed with additional parameters, so that different
message formats can be sent to the same time with one CAN controller.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd CAN Period S_BRS S_FD
N 0xC0 104 1..4 MSB LSB

byte 8 byte 9 byte 10 byte 11 byte 12 . . . byte N-1 byte N
CAN ID data . . . data cks

MSB LSB . . .

len length of telegram
ecu target address
cmd command code
CAN similar to SEND_CAN
Period similar to SEND_CAN
S_BRS if unequal to zero, for this message, bit rate switching will

be suppressed.
S_FD if unequal to zero, message will be sent in standard format.

In this case the message must not exceed a size of 8 bytes.
Bit rate switching is also suppressed this way.

CAN_ID similar to SEND_CAN
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

103

UCBASE commands CAN Commands

Remarks

• S_BRS and S_FD can only suppress settings which are configured with the
INIT_CAN(98) command (ref. chapter 6.4.7 on page 92).

104

UCBASE commands CAN Commands

6.4.12 UCBASE::RECEIVE_CANFD (105)

(UNICOM3 Rev.C1, D and UNICOM4 Rev.E only)

Similar to RECEIVE_CAN(97) (ref. chapter 6.4.6 on page 89), this command can
report received CAN messages. Only one message is being reported a time. Two
additional fields in response telegram reports about whether message is sent with
bit rate switch and/or in FD format.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd CAN cks
N 0xC0 105 1..4

len length of telegram
ecu target address
cmd command code
CAN Similar to RECEIVE_CAN;
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu status time
N 0xC0 MSB LSB

byte 7 byte 8 byte 9 byte 10 byte 11 byte 12
BRS FD ID

MSB LSB

byte 13 . . . byte N-1 byte N
data . . . data cks

. . .

len length of telegram
ecu source address
status result status
time similar to RECEIVE_CAN
BRS 0: without bitrate switch, 1: with bitrate switch
FD 0: standard format, 1: FD format
ID similar to RECEIVE_CAN
data similar to RECEIVE_CAN
cks checksum of telegram

105

UCBASE commands CAN Commands

Remarks

• If used CAN is not configured for FD, BRS and FD are always reported as 0

106

UCBASE commands FlexRay Commands

6.5 FlexRay Commands

6.5.1 UCBASE::FLEXRAY_CONFIG (194)

This command switches FlexRay Transceivers, termination, measure lines, error
conditions and bridges of FlexRay Controller 1. The Mode Pins of Transceivers of
both FlexRay Controller 1 and 2 can be controlled.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd chan bridge off
11 0xC0 194 1,2 0,1 0,1

byte 6 byte 7 byte 8 byte 9 byte 10 byte 11
term test simP simM mode cks
0,1 0,1 0,1,2 0,1,2

len length of telegram
ecu target address
cmd command code
chan Channel of FlexRay Controller 1:

1: Channel A, 2: Channel B
bridge Bridge between FlexRay Controller 1 and 2 (only selected

channel):
0: disconnected, 1: connected

off controls connection of transceiver lines:
0: connected (on), 1: disconnected (off)

term switches termination:
0: off, 1: on

test activates the measure lines
0: off, 1: on

simP error condition simulation on FR Plus line:
0: off, 1: connected to GND, 2: connected to UBATT

simM error condition simulation on FR Minus line:
0: off, 1: connected to GND, 2: connected to UBATT

mode controlls the level of the mode pins of transceivers (bit field):

bit 0 Enable Pin of FlexRay Controller 1,
selected channel

bit 1 Enable Pin of FlexRay Controller 2,
selected channel

bit 2 Standby Pin of FlexRay Controller 1,

107

UCBASE commands FlexRay Commands

selected channel
bit 3 Standby Pin of FlexRay Controller 2,

selected channel
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• For normal FlexRay communication, both Enable and Standby pins of transceivers
must be set to high.

• Default setting after power up is bridge = off, off = false, term = on, test +
simP + simM = off, Enable and Standby pins = high.

108

UCBASE commands Network Commands

6.6 Network Commands

(UNICOM3 Rev.D and UNICOM4 Rev.E only)

With help of these commands, the netwerk interfaces can be configured and tested.

6.6.1 UCBASE::ETHERNET_INIT (80)

This command sets the network parameters as IP address, net mask etc. and stores
it persistently. Further more, it can report current settings.

Command (form 1, reset to default settings)

byte 0 byte 1 byte 2 byte 3 . . . byte 8 byte 9
len ecu cmd MAC . . . MAC cks
3/9 0xC0 80 . . .

Command (form 2, set configuration for physical interface)

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte 7
len ecu cmd unit IP Addr

20/26 0xC0 80 0/1 MSB . . . LSB

byte 8 . . . byte 11 byte 12 . . . byte 15
Net Mask Default GW

MSB LSB MSB LSB

byte 16 byte 17 byte 18 byte 19
Port MTU

MSB MSB MSB LSB

byte 20 . . . byte 25 byte 26/20
MAC . . . MAC cks

. . .

Command (form 3, set configuration for VLAN)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd unit phys VLAN ID

23/29 0xC0 80 100..115 0,1,0xFF MSB LSB

byte 7 . . . byte 10 byte 11 . . . byte 14
IP Addr Net Mask

MSB . . . LSB MSB LSB

109

UCBASE commands Network Commands

byte 15 . . . byte 18 byte 19 byte 20 byte 21 byte 22
Default GW Port MTU

MSB LSB MSB MSB MSB LSB

byte 23 . . . byte 28 byte 23/29
MAC . . . MAC cks

. . .

Command (form 4, read configuration)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd unit cks
4 0xC0 80 0,1,100..115

len length of telegram
ecu target address
cmd command code
unit 0: RJ45 connector, 1: DSUB connector (Ethernet or BroadR

Reach)
100..115: VLAN device

phys (with VLANs only) physical underlaying interface of VLAN
(0,1).
0xFF deactivates the VLAN device

VLAN ID (with VLANs only) The ID of VLAN
IP Addr IP address of interface
NetMask Net Mask
Default GW IP address of default gateway of the subnet (if not exist, 0)
Port port for STPonUDP and STPonTCP, should be 0x2222
MTU Maximum Transfer Unit, should always be 1500 (0x05DC)
MAC (optional) These 6 bytes select the UNICOM device which

is to configure. It is mandatory if the command is being
executed via UDP Broadcast.

cks checksum of telegram

Response (command form 1, 2, 3)

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

110

UCBASE commands Network Commands

Response (command form 4, physical interface)

byte 0 byte 1 byte 2 byte 3 . . . byte 6
len ecu status IP Addr
25 0xC0 MSB . . . LSB

byte 7 . . . byte 10 byte 11 . . . byte 14
Net Mask Default GW

MSB . . . LSB MSB . . . LSB

byte 15 byte 16 byte 17 byte 18 byte 19 . . . byte 24 byte 25
Port MTU MAC Address cks

MSB LSB MSB LSB MSB . . . LSB

Response (command form 4, VLAN)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu status phys VLAN ID
28 0xC0 MSB LSB

byte 6 . . . byte 9 byte 10 . . . byte 13
IP Addr Net Mask

MSB . . . LSB MSB . . . LSB

byte 14 . . . byte 17 byte 18 byte 19 byte 20 byte 21
Default GW Port MTU

MSB . . . LSB MSB LSB MSB LSB

byte 12 . . . byte 27 byte 28
MAC Address cks

MSB . . . LSB

len length of telegram
ecu source address
status result status
phys..MTU see command, form 2 and 3
MAC Address Media Access Controll Address of selected unit (6 bytes).

With VLANs, the MAC address of the underlaying physical
interface is reported.

cks checksum of telegram.

Remarks

• The specified network configuration is being stored internally and restored
with every power up of UNICOM

111

UCBASE commands Network Commands

• The addresses are 32 bit values computed from each of the four parts sepa-
rated by dots into hexadecimal:
e.g. 192.168.1.240 yelds 0xC0A801F0

• If IP Addr is set to 0x00000000, automatic network configuration is done
via DHCP protocol everytime the ethernet link comes up, except the Port
and the MTU parameter.

• Form 4 of command can be used to figure out what DHCP has been config-
ured if activated.

• VLANs can also be used for STP communication. It is enabled as soon as the
Port parameter is set different to 0. However, only the unit with the lowest
number where Port is different to 0 is used for STP.

• The MAC Address can’t be changed. It is build from a fix part and the serial
number of the UNICOM device.

• If the ETHERNET_INIT(80) command is being executed over Ethernet it-
self, the settings still keep unchanged until the next device reset.

• This command can be executed by STP over UDP Broadcast when forms
with appended MAC address are being used.

112

UCBASE commands Network Commands

6.6.2 UCBASE::ETHERNET_STATUS (81)

The command reports whether the specified interface has an active link, and its
error counter.

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd unit cks
4 0xC0 81 0/1

len length of telegram
ecu target address
cmd command code
unit 0: RJ45 connector, 1: DSUB connector (ethernet or BroadR

Reach)
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte 7 byte 8
len ecu status link errors cks
8 0xC0 0/1 MSB . . . LSB

len length of telegram
ecu source address
status result status
link 0: inactive, 1: active
errors error counter of the interface. Will be reseted with the com-

mand.
cks checksum of telegram

113

UCBASE commands Network Commands

6.6.3 UCBASE::SELECT_PHY (82)

The command selects either the ethernet phy or the BroadR Reach phy for the
network interface on the DSUB62 connector (unit 1).

Command, Form 1

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd phy cks
4 0xC0 82 0/1

Command, Form 2

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd phy mode cks
5 0xC0 82 0/1 0,1,2

len length of telegram
ecu target address
cmd command code
phy 0: ethernet phy, 1: BoadR Reach phy
mode (only with BroadR Reach Phy)

0: Auto Negotiation (not with UNICOM4 Rev.E)
1: Manual Slave Mode, 100 MBits/s
2: Manual Master Mode, 100 MBits/s

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• After executing the command, it should be tested whether the network inter-
face reaches an active link, using the ETHERNET_STATUS(81) command
(ref. chapter 6.6.2 on page 113)

114

UCBASE commands Network Commands

6.6.4 UCBASE::PING (83)

This command sends an ICMP request (well known as Ping) on the specified in-
terface and waits for an ICMP Echo.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte 7 byte 8
len ecu cmd unit IP Addr cks
8 0xC0 83 0,1,100..115 MSB . . . LSB

len length of telegram
ecu target address
cmd command code
unit 0: RJ45 connector, 1: DSUB connector (ethernet or BroadR

Reach), 100..115: VLAN
IP Addr Destination IP address
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• For building an IP address, refer to ETHERNET_INIT(80) command (ref.
chapter 6.6.1 on page 109).

• If no response is received, a status value of NO_ICMP_REPLY_ERROR(0xB1)
is being reported with the status value.

115

UCBASE commands Network Commands

6.6.5 UCBASE::MAC_FILTER (84)

This command is used to configure the Ethernet MAC Address Filter list. The
MAC Filter allows to restrict the accessibility to UNICOM over LAN by layer 2
address filtering. The list is stored persistently. Up to 4 permitted addresses can be
defined (whitelisting). If no MAC Address is registered, the MAC filter is disabled
(network access is not restricted).

Command (form 1, set filter entry)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 . . . byte 10 byte 11
len ecu cmd unit index MAC Address cks
11 0xC0 84 0 0..3 MSB . . . LSB

Command (form 2, delete filter entry)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd unit index cks
5 0xC0 84 0 0..3

len length of telegram
ecu target address
cmd command code
unit unit 0 (RJ45 connector)
index list index (0..3) for MAC Address
MAC Address MAC Address of permitted Ethernet device (6 bytes)
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• Each list entry permits network access from specific device assigned by its
MAC address (white list).

116

UCBASE commands Network Commands

• If no MAC address is registered, the MAC filter is disabled (network access
is not restricted).

• With form 1, the command sets a MAC Address in the MAC Filter List on
given index.

• Form 2 is used to delete a MAC Address from the filter list on given list
index.

117

UCBASE commands Network Commands

6.6.6 UCBASE::SCAN_DEVICE (89)

This command can be used to identify an UNICOM device and read out the basic
network settings. It should be used for device scanning by executing it via UDP
Broadcast (ref. chapter 2.4.5 on page 27).

Command

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd opt cks
4 0xC0 89 0

len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu status unit phys ID
29 0xC0 0xA0 MSB LSB

byte 7 . . . byte 10 byte 11 . . . byte 14
IP Addr Net Mask

MSB . . . LSB MSB . . . LSB

byte 15 . . . byte 18 byte 19 byte 20 byte 21 byte 22
Default GW Port MTU

MSB . . . LSB MSB LSB MSB LSB

byte 23 . . . byte 28 byte 29
MAC . . . MAC cks

. . .

len length of telegram
ecu source address
status result status
unit net device unit which is used for STP, either physical unit or

VLAN
phys if unit is VLAN, number of physical device (0, 1) which

VLAN is based on, dummy else.
ID If VLAN used: VLAN ID, dummy else.
IP Address IP Address of network unit

118

UCBASE commands Network Commands

Net Mask net mask
Default GW default gateway
port port number for STP
MTU mtu
MAC MAC address of first network device, for identification of

UNICOM.
cks checksum of telegram

Remarks

• Last 2 bytes of reported MAC address are the serial number of UNICOM, as
16 bit value.

• This command can be executed by STP over UDP Broadcast.

119

UCBASE commands Network Commands

6.6.7 UCBASE::Factory Reset

If network configuration is wrong so that it is impossible to communicate with
UNICOM over LAN anymore, and USB or RS232 can’t be used, there is a method
to reset network configuration to factory settings:

• Power down UNICOM.

• Connect pin 13 (GND) and pin 14 (LVDS ID) of the Option connector to-
gether e.g. by a jumper.

• Power up UNICOM.

• Watch the green power LED: it should flash three times after another, fol-
lowed by a pause. In this state UNICOM can’t communicate.

• Power down UNICOM.

• Remove jumper.

• Power up UNICOM again.

• Now, green power LED should light permanently again.

After executing this sequence, default settings are active:

Unit 0 (PC Interface):

• IP Address = 192.168.1.240

• Net Mask = 255.255.255.0

• Default Gateway = 0.0.0.0

• STP port = 0x2222

• MTU = 0x05DC (1500)

Unit 1 (Target Interface):

• IP Address = 192.168.2.240

• Net Mask = 255.255.255.0

• Default Gateway = 0.0.0.0

• STP port = 0x0000

• MTU = 0x05DC (1500)

All VLANs are deactivated.

120

UCBASE commands FASTFLASH

6.7 FASTFLASH

6.7.1 UCBASE::X_FASTFLASH (14)

This command starts the high-speed flash programming process called FASTFLASH.
The command telegram specifies the address range in the ECU (start, end) and the
offset in the UNICOM data file (offset). Optional, the filename of the file which
contains the data can be specified. With no filename, DEFAULT.DAT is used.

The CAN bus parameters are selected with CAN_CONFIG (s. chapter 6.4.3 on
page 84) and INIT_CAN (s. chapter 6.4.7 on page 92). The data to be programmed
has to be stored on the storage medium of UNICOM using the file commands (s.
chapter 6.3 on page 50.

FASTFLASH only works if a Module is loaded that implements a FASTFLASH
procedure. Otherwise, the command reports a NOT_CONFIGURED_ERROR(90).

The program file format that is supported by the Module, the number of CAN buses
that are involved and other adjustable parameters are defined by the Module itself
or may configurable by a special command of the Module.

Currently, the following file formats are being supported in general:

• BINARY format

• Motorola SRECORD format

• INTEL HEX Format

FASTFLASH can use up to 4 CAN buses for transferring the data. Because the
FASTFLASH procedure is implemented by the loadable Module, other interfaces
and different transfer protocols can be used for FASTFLASH.

Command (form 1, default filename)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd start
15 0xC0 14 MSB LSB

byte 7 byte 8 byte 9 byte 10
end

MSB LSB

byte 11 byte 12 byte 13 byte 14 byte 15
offset cks

MSB LSB

121

UCBASE commands FASTFLASH

Command (form 2, with specified filename)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd start
N 0xC0 14 MSB LSB

byte 7 byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14
end offset

MSB LSB MSB LSB

byte 15 . . . byte N-3 byte N-2 byte N-1 byte N
file EOS slot cks

0 0..3

len length of telegram
ecu target address
cmd command code
start with binary file, start address of flash area to be programmed

in ECU. With the INTEL HEX and MOTOROLA SRECORD
format, it should be 0

end with binary file, end address of flash area to be programmed
in ECU. It should be 0 with INTEL HEX and MOTOROLA.

offset with binary file, position of data in file. It should be 0 with
INTEL HEX and MOTOROLA

file name of file that contains the programming data
EOS end-of-string (0)
slot (optional) specifies the slot where the module is resident

who’s FASTFLASH implementation should be executed. It
must not specified when module was loaded monolithic (re-
fer to the MODULE command, chapter 6.2.1 on page 47).

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 . . . byte N-1 byte N
len ecu status par 1 . . . par n cks

N=3+n 0xC0 . . .

len length of telegram
ecu source address
status result status
par (optional) additional result parameters, depending on FAST-

FLASH implementation, see remarks

122

UCBASE commands FASTFLASH

cks checksum of telegram

Remarks

• The values of start and end are subject to some limitations depending on the
selected protocol (e.g. alignment).

• Since FASTFLASH is realized by loadable modules, start, end and offset
parameters may have additional functions. Refer to the module documenta-
tion.

• The execution time of X_FASTFLASH depends on the amount of data to be
programmed.

• The response telegram differs depending on FASTFLASH implementation
of the currently loaded module. It can report additional info received by the
target device or other parameters e.g. resulting in verify operations. Please
refer to the FASTFLASH chapter in the module ducumentation for more
information.

123

UCBASE commands FASTFLASH

6.7.2 UCBASE::X_FASTFLASH_TAB (15)

As X_FASTFLASH (s chapter 6.7.1 on page 121), this command performs high
speed flash programming. The only difference to X_FASTFLASH is that more
then one flash range can be specified with one command.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd n_jobs
N 0xC0 15 1..n

byte 4 byte 5 byte 6 byte 7 byte 8 byte 9 byte 10 byte 11 . . .
start 1 end 1 . . .

MSB LSB MSB LSB . . .

byte x byte x byte x byte x byte x byte x byte x byte x
start n end n

MSB LSB MSB LSB

byte x byte x byte x byte x byte x . . . byte N-3 byte N-2
offset file EOS

MSB LSB 0

byte N-1 byte N
slot cks
0..3

len length of telegram
ecu target address
cmd command code
n_jobs number of fastflash ranges that follow
start x start address of range in the ECU
end x end address of range in ECU
offset offset in file, associated with the first range
file name of file that contains the programming data
EOS end-of-string (0)
slot (optional) specifies the slot where the module is resident

who’s FASTFLASH implementation should be executed. It
must not specified when module was loaded monolithic (re-
fer to the MODULE command, chapter 6.2.1 on page 47).

cks checksum of telegram

124

UCBASE commands FASTFLASH

Response

byte 0 byte 1 byte 2 byte 3 . . . byte N-1 byte N
len ecu status par 1 . . . par n cks

N=3+n 0xC0 . . .

len length of telegram
ecu source address
status result status
par (optional) additional result parameters, depending on FAST-

FLASH implementation, see remarks
cks checksum of telegram

Remarks

• This type of FASTFLASH can only be used with binary files

• If no filename is specified, the file DEFAULT.DAT is assumed to contain the
programming data.

• The Offset parameters specifies the file offset of the first flash range. That
means, that data in file at position Offset is being programmed to the flash
address specified with start 1. The offsets in file for the following flash ranges
are computed as follows:

o f f setn = o f f set + startn − start1 (6.1)

where start n is the start address in flash of n-th flash range. Take care that
current offset is not a negative value. An ADDRESS ERROR is reported in
this case.

• The response telegram differs depending on FASTFLASH implementation
of the currently loaded module. It can report additional info received by the
target device or other parameters e.g. resulting in verify operations. Please
refer to the FASTFLASH chapter in the module ducumentation for more
information.

125

UCBASE commands Batch commands

6.8 Batch commands

Batch commands allow start and evaluation of execution of batch files inside of
UNICOM. A batch file simply consists of commands as normally sent by the test
computer, including length code and checksum. If a batch file is being started,
UCBASE reads these commands after another from the file and treats them in the
same manner as received over serial interface. If no error occurs, it reads and
executes the commands up to the end of file. In case of error it stops and reports the
number of command which has been failed. With a special command, the response
of the failed command can be recognized thereafter. With some more commands it
is possible to delay the execution or to check the response of a previous executed
command.

Batch files offers the possibility to let UNICOM do more complex things with
sending only one command.

There is a special batch file called Auto Batch File. This file must have the special
name auto.ubf and reside in the root directory of storage medium. It is automat-
ically executed with startup of the UCBASE software.

The following chapters describes the batch file related commands.

6.8.1 UCBASE::START_BATCH (30)

This command starts execution of a batch file that must reside on UNICOM’s stor-
age medium.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte N-2 byte N-1 byte N
len ecu cmd opt file EOS cks
N 0xC0 30 0 0

len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
file name of batch file to be executed
EOS End-Of-File, 0
cks checksum of telegram

126

UCBASE commands Batch commands

Response, no error

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

Response, error occurred

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu status cnt cks
5 0xC0 98,99 MSB LSB

len length of telegram
ecu source address
status result status
cnt number of command in batch file that has been failed
cks checksum of telegram

Remarks

• In general, batch files can have any file name that is allowed with the file
system. But in order to let it be recognized as batch file it should have the
extension .ubf (U

¯
nicom B

¯
atch F

¯
ile).

127

UCBASE commands Batch commands

6.8.2 UCBASE::BATCH_RESPONSE (31)

With this command, the response of the last executed command in the batch file
(succeeded as well as failed) can be recognized.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 31

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 . . . byte N-1 byte N
len ecu status res 1 . . . res n cks

N=3+n 0xC0 . . .

len length of telegram
ecu source address
status result status
res response of last executed command in batch file
cks checksum of telegram

Remarks

• If the response telegram that is to be fetched does not fit into the parameter
area of the response telegram of BATCH_RESPONSE command, it will be
cut.

128

UCBASE commands Batch commands

6.8.3 UCBASE::BATCH_DELAY (32)

This command delays execution of a batch file.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd deltime cks
5 0xC0 32 MSB LSB

len length of telegram
ecu target address
cmd command code
deltime delay time in milliseconds
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• The command can also be executed out of batch file. In this case, it simply
delays its own response. That may be useful to test a command sequence
that should later be realized by a batch file.

129

UCBASE commands Batch commands

6.8.4 UCBASE::BATCH_CHECK_RESPONSE (33)

This command checks the response of the previous executed command.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 . . . byte N-1 byte N
len ecu cmd start data . . . data cks
N 0xC0 33 MSB LSB . . .

len length of telegram
ecu target address
cmd command code
start start position in last response from where the comparison

should be take place
data data bytes that should match with the last response
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• If last response matches with the desired data bytes, a status of NO_ERROR
is being reported and batch file continues.

• If last response doesn’t match, a status of BATCH_WRONG_RESP_ERROR
is being reported and the batch file terminates with error.

• The command can be executed also out of batch file.

130

UCBASE commands Hardware Control and Status Commands

6.9 Hardware Control and Status Commands

With help of the following commands, UNICOM’s GPIO pins can be read and set,
the 2 AD converter channels can be read and the 2 PWM units can be controlled.

6.9.1 UCBASE::READ_ADC (66)

This commando reports about the voltage level on both AD converter inputs of
UNICOM.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 66

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu status adc1 adc2 cks
7 0xC0 MSB LSB MSB LSB

len length of telegram
ecu source address
status result status
adcx measuring result on corresponding adc input. 12 bits are

relevant, 0x0FFF corresponds to 30V, 0x0000 corresponds
to 0V.

cks checksum of telegram

Remarks

• Executing this command resets the ADC statistics, see ADC_STAT com-
mand (chapter 6.9.2 on page 132).

131

UCBASE commands Hardware Control and Status Commands

6.9.2 UCBASE::ADC_STAT (67)

This command fetches minimum and maximum voltage level that AD converters
have seen since last execution of the command, and resets them.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 67

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2
len ecu status
11 0xC0

byte 3 byte 4 byte 5 byte 6
max 0 min 0

MSB LSB MSB LSB

byte 7 byte 8 byte 9 byte 10 byte 11
max 1 min 1 cks

MSB LSB MSB LSB

len length of telegram
ecu source address
status result status
max 0 maximum value on ADC input 0
min 0 minimum value on ADC input 0
max 1 maximum value on ADC input 1
min 1 minimum value on ADC input 1
cks checksum of telegram

Remarks

• UNICOM reads the ADC values continuously in the background and com-
putes minimum and maximum. The command fetches the currently com-
puted values and starts from beginning.

132

UCBASE commands Hardware Control and Status Commands

• See also READ_ADC command (chapter 6.9.1 on page 131).

133

UCBASE commands Hardware Control and Status Commands

6.9.3 UCBASE::CONTROL_VGPIO (70)

This command controls the power supply of the GPIO stages. 2 different internal
sources or an external one can be selected. Further, the command can control the 2
high side switches and the LVDS pin supply of UNICOM.

Command, Form1

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd VGPIO HS1 HS2 LVDS_EN cks
7 0xC0 70 0,33,50 0,1 0,1 0,1

Command, Form2 (UNICOM3 Rev.D+UNICOM4 Rev.E only)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu cmd VGPIO V_VLV HS1 HS2 LVDS_EN cks
8 0xC0 70 0,33,50 0,33,50 0,1 0,1 0,1

Command, Form3 (UNICOM3 Rev.D (!) only)

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 70

len length of telegram
ecu target address
cmd command code
VGPIO controls power supply of GPIO stages:

0: external supply
33: internal supply, 3.3V
50: internal supply, 5.0V

V_VLV controls extra power supply
0: off
33: internal supply, 3.3V
50: internal supply, 5.0V

HSx control the high side switches:
0: off
else: on

LVDS_EN enables/disables the power supply of the LVDS drivers
0: off
else: on

cks checksum of telegram

134

UCBASE commands Hardware Control and Status Commands

Response Form 1 (with Command Form 1

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status VGPIO sense cks
4 0xC0 0,1

Response Form 2 (with Command Form 2 or 3, UNICOM3 Rev.D+UNICOM4
Rev.E only

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu status VGPIO sense V_VLV sense cks
5 0xC0 0,1 0,1

len length of telegram
ecu source address
status result status
VGPIO sense 0: no VGPIO (neither external nor internal) detected

1: VGPIO (internal or external) detected
V_VLV sense 0: V_VLV off detected

1: V_VLV on detected
cks checksum of telegram

135

UCBASE commands Hardware Control and Status Commands

6.9.4 UCBASE::CONFIG_GPIO (71)

This command enables or disables pullup resistors at the GPIO pins of UNICOM.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd GPIO Pullup cks
5 0xC0 71 1..n 0,1

len length of telegram
ecu target address
cmd command code
GPIO number of GPIO (UNICOM4 Rev.E: 1 . . . 12, else: 1 . . . 8)
Pullup 0: pullup off

1: pullup on
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

136

UCBASE commands Hardware Control and Status Commands

6.9.5 UCBASE::CONTROL_GPIO (72)

This command enables or disables a GPIO output of UNICOM and controls its
level.

With UNICOM3 Rev.D and UNICOM4 Rev.E, there is another form that can set
or clear all outputs, enable signals and pullups to the same time.

Command, Form 1

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd GPIO out en cks
6 0xC0 72 1..n 0,1 0,1

len length of telegram
ecu target address
cmd command code
GPIO number of GPIO (UNICOM4 Rev.E: 1 . . . 12, else: 1 . . . 8)
out level of output:

0: 0V
1: VGPIO (s. CONTROL_VGPIO, chapter 6.9.3 on page 134)

en 0: HIGHZ
1: PUSH/PULL

cks checksum of telegram

Command, Form 2 (UNICOM3 Rev.D (!) only)

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd mask out en pullup cks
7 0xC0 72

len length of telegram
ecu target address
cmd command code
mask bit mask that controls what out/en/pullup lines are involved
out bit mask for controlling the output lines
en bit mask for controlling the enable lines
pullups bit mask for controlling the pullups
cks checksum of telegram

137

UCBASE commands Hardware Control and Status Commands

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• With form 2, output line is set to high if corresponding bit in out is set to
1, and enable line resp. pullup is activated if corresponding bit in en resp.
pullup is set to 1.

138

UCBASE commands Hardware Control and Status Commands

6.9.6 UCBASE::READ_GPIO (73)

This command reads the level of one of the GPIO pins of UNICOM.

With UNICOM3 Rev.D and UNICOM4 Rev.E there is another form that can report
all the GPIO lines to the same time.

Command Form 1

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd GPIO cks
4 0xC0 73 1..n

Command Form 2 (UNICOM3 Rev.D (!) only)

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 73

len length of telegram
ecu target address
cmd command code

GPIO number of GPIO (UNICOM4 Rev.E: 1 . . . 12, else: 1
. . . 8)

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status level cks
4 0xC0

len length of telegram
ecu source address
status result status
level • With form 1:

0: low, 1: high
• With Form 2 (Rev.D only):

bit mask where every bit corresponds to one GPIO line
and shows its level.

cks checksum of telegram

139

UCBASE commands Hardware Control and Status Commands

6.9.7 UCBASE::CONTROL_PWM(75)

With this command, rectangular signals in a wide range of frequency and duty
cycle can be generated on the GPIO pins with help of the two PWM units.

Command, form 1 (start generating)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd unit gpio
11 0xC0 75 0..1 1..8/12

byte 5 byte 6 byte 7 byte 8 byte 9 byte 10 byte 11
psc reload compare cks

MSB LSB MSB LSB MSB LSB

Command, form 2 (stop generating)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd unit cks
4 0xC0 75 0..1

len length of telegram
ecu target address
cmd command code
unit PWM unit to be used (0 or 1)
gpio GPIO pin where the signal has to be generated (1 thru 8 for

UNICOM3, 1 thru 12 for UNICOM4)
psc Prescaler for the PWM counter clock. The counter clock

frequency is 60 MHz (UNICOM3 Rev.Cx), 80 MHz (UNI-
COM3 Rev.D) resp. 100 MHz (UNICOM4 Rev.E) devided
by this prescaler value

reload The PWM counter starts from 0 and counts upwards until
it reaches this value. Afterwards it starts with 0 again. The
reload value specifies, together with the prescaler, the output
frequency of PWM unit.

compare When the PWM counter starts counting with 0, the output
pin is low at first. When counter reaches the value in com-
pare, the output pin goes high. When counter reaches its end
value (reload), it goes low again. So, compare specifies the
duty cycle of PWM output. Its value must be between 0 and
the reload value. If it is 0, constant high level is generated.
If it is equal or greater then reload, a constant low level is
generated.

cks checksum of telegram

140

UCBASE commands Hardware Control and Status Commands

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• With the start form, a PWM signal is specified. It is being generated imme-
diately. Up to 2 such signals can be defined this way, using the both PWM
units and different output GPIOs.

• The output GPIOs that are being used are automatically enabled and set into
Push/Pull output mode.

• If the start form of command is sent twice with identical parameters except
the compare value, the PWM unit smoothly adopts the new value without
glitches or loosing its frequency.

• With the stop form, the generating of PWM signal generated by the specified
unit stops and the GPIO is being disabled again.

• Consider that VGPIO must be provided either by an external supply or by
using the internal supply (refer chapter 6.9.3 on page 134).

141

UCBASE commands Hardware Control and Status Commands

6.9.8 UCBASE::CONTROL_VIO (77)

This command can be used to control the level of VIOx lines manually.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd vio lvl cks
5 0xC0 77 1..3 0,1,0xff

len length of telegram
ecu target address
cmd command code
vio selects VIO line which is to be controlled (1..3)
lvl defines desired level:

0: low (dominant)
1: high (recessive)
0xFF: default level

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status lvl cks
4 0xC0 0,1

len length of telegram
ecu source address
status result status
lvl level witch was read from line:

0: low (dominant)
1: high (recessive)

cks checksum of telegram

Remarks

• If low or high level is forced on selected VIO line, the default functionality
(K-Line, LIN...) is disabled. Set it back to default level in order to re-enable.

142

UCBASE commands Firmware Update

6.10 Firmware Update

With help of the following commands, the complete firmware of UNICOM can be
updated.

6.10.1 UCBASE::FIRMWARE_UPDATE (126)

With this command, a firmware update of UNICOM is being initiated.

Command

byte 0 byte 1 byte 2 byte 3 . . . byte N-2 byte N-1 byte N
len ecu cmd fwfile EOS cks
N 0xC0 126

len length of telegram
ecu target address
cmd command code
fwfile name of file with the new firmware
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• The file with the new firmware must be copied onto UNICOM’s storage
medium first, using the file commands (s. chapter 6.3 on page 50)

• The command copies the content of the file into a reserved area of storage
medium.

• With the next startup (e.g. by RESET_UNICOM command, chapter 6.10.2
on page 145), the new firmware is being installed.

• Depending of the updated parts of firmware, it takes up to 18 seconds (UNI-
COM3 Rev.C), 32 seconds (UNICOM3 Rev.D) resp. 80 second (UNICOM4
Rev.E) until UNICOM is up again.

143

UCBASE commands Firmware Update

• After software update, a READ_VERSION command (s. chapter 6.1.2 on
page 40) should be executed in order to check whether the update was suc-
cessfully.

• Update is failsafe. If the update procedure is interrupted by loss of power
supply, either the old software is still active after reset or UNICOM tries
again to execute the update process.

144

UCBASE commands Firmware Update

6.10.2 UCBASE::RESET_UNICOM (127)

This command performs a system reset of UNICOM.

With UNICOM3 Rev.D and UNICOM4 Rev.E, the command can be executed via
UDP broadcast. That can be used to activate network settings which are being done
over LAN itself.

Command (Form 1)

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 127

Command (Form 2)

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu cmd opt cks
4 0xC0 127

Command (Form 3)

byte 0 byte 1 byte 2 byte 3 byte 4 . . . byte 9 byte 10
len ecu cmd opt mac cks
10 0xC0 127

len length of telegram
ecu target address
cmd command code
opt controls behaviour of command:

0: nothing special (same as form 1)
1: estimated re-boot time in response telegram

mac MAC address of device which should execute the command
(used with UDP Broadcast)

cks checksum of telegram

Response, nothing special

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

145

UCBASE commands Firmware Update

Response, with re-boot time

byte 0 byte 1 byte 2 byte 3 byte 4
len ecu status boot cks
4 0xC0

len length of telegram
ecu source address
status result status
boot estimated re-boot time in sec.
cks checksum of telegram

Remarks

• The response telegram is being sent before RESET is performed.

• After reset, UNICOM needs app. 0.5 seconds (UNICOM3 Rev.B+Cx) resp.
1.5 seconds (UNICOM3 Rev.D+UNICOM4 Rev.E) until it is up again.

• Form 2 of command is only available on UNICOM3 Rev.D and UNICOM4
Rev.E. The estimated boot time depends on whether a firmware update pro-
cess has been initiated using the FIRMWARE_UPDATE (126) command
(ref. chapter 6.10.1 on page 143) or not. The Test PC should wait at least
this time before it will send the next command.

• The command can be executed via STP over UDP Broadcast, if MAC ad-
dress is specified (form 3). Only if MAC address matches with this one of
the current device, command will be accepted.

146

UCBASE commands Logistic

6.11 Logistic

6.11.1 UCBASE::READ_LOGISTICS (6)

This commands reports the device type, the hardware revision and the serial num-
ber of the UNICOM device.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 6

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 . . . byte 10
len ecu status devtype
43 0xC0 . . .

byte 11 . . . byte 18 byte 19 . . . byte 34
hwrev serial

.

byte 35 . . . byte 42 byte 43
reserved cks

. . .

len length of telegram
ecu source address
status result status
devtype device type (up to 8 characters, always "UC3S")
hwrev hardware revision (up to 8 characters, for example "D331")
serial serial number (up to 16 characters, for example "CS12345")
cks checksum of telegram

Remarks

• The response returns ASCII characters. Unused bytes are returned as zero.

• For information about the capabilities of the device, use READ_CAPABILITIES (7)
command (refer to chapter 6.11.2 on page 149).

147

UCBASE commands Logistic

• This command can be executed by STP over UDP Broadcast.

148

UCBASE commands Logistic

6.11.2 UCBASE::READ_CAPABILITIES (7)

With help of this command it is possible to find out which special features of the
device are enabled. For UNICOM3 Rev.C1, D and UNICOM4 Rev.E devices only.

Command

byte 0 byte 1 byte 2 byte 3
len ecu cmd cks
3 0xC0 7

len length of telegram
ecu target address
cmd command code
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3 . . . byte 6 byte 7
len ecu status Capabilities cks
7 0xC0 MSB . . . LSB

len length of telegram
ecu source address
status result status
Capabilities bit field that reports enabled features:

bit 0 = 1: FlexRay is available
bit 1 = 1: Ethernet unit 1 is available
bit 2 = 1: CAN FD available on CAN 1 and 2
bit 3 = 1: 64 GByte storage medium
bit 4 = 1: Secure Boot active
bit 12..15: Sub Revision
bit 31 = 1: Capabilities are valid
other: reserved

cks checksum of telegram

Remarks

• Capabilities are properties of the current UNICOM device and can’t be changed.

• This command can be executed by STP over UDP Broadcast.

149

UCBASE commands Logistic

6.11.3 UCBASE::USERDATA (125)

With this command, up to 512 bytes of user data can be stored at UNICOM’s
storage medium.

Command form 1, "read"

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8
len ecu cmd opt offset size cks
8 0xC0 125 1 MSB LSB MSB LSB

Command form 2, "write"

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd opt offset

N=6+n 0xC0 125 2 MSB LSB

byte 6 . . . byte N-1 byte N
data 1 . . . data n cks

. . .

Command form 3, "fill"

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd opt offset
9 0xC0 125 3 MSB LSB

byte 6 byte 7 byte 8 byte 9
size pattern cks

MSB LSB

len length of telegram
ecu target address
cmd command code
opt 1: read data, 2: write data, 3: fill range
offset offset in bytes relative to the begin of user data area
size number of bytes to read or fill
data data bytes to write
pattern data byte used to fill a range
cks checksum of telegram

150

UCBASE commands Logistic

Response form 1 "read"

byte 0 byte 1 byte 2 byte 3 . . . byte N-1 byte N
len ecu status data 1 . . . data n cks

N=3+n 0xC0 . . .

Response form 2 "write", 3 "fill"

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
data requested data bytes
cks checksum of telegram

Remarks

• User data are being stored on a reserved area of UNICOM’s storage medium
which is 512 bytes in size. It is not a file, and it is untouched when storage
medium will formatted or erased, or if a software update is performed.

• It can be used to store device specific data as calibration date, device number,
etc.

• Before first using, the userdata area is filled with random data. It should be
pre-written by using the fill form of the command, e.g. with 0x00 or 0xFF
values.

• With form 2 and 3, only the specified range will be modified, other data
keeps untouched.

• Limitations:

– offset+size must not exceed 512 (size is even the number of bytes to
be written with form 2)

– When STP protocol is active, up to 252 bytes can be read or up to
249 bytes can be written with one command. When XSTP protocol is
active, the entire area can be read or written (512 bytes).

151

UCBASE commands Logging Commands

6.12 Logging Commands

(UNICOM3 Rev.D and UNICOM4 Rev.E only)

UCBASE can generate log files of the command telegrams which it receive, and
their response telegrams. They will be stored onto UNICOM’s storage medium or
onto RAM file system. To evaluate them, they can be uploaded using the FILE
commands.

Log files are text files. Each line of a log file consist of a time stamp, a direction
marker (for distinguish between command telegrams and response telegrams), and
the bytes of the telegrams in HEX.

Up to 4 log channels can be enabled and configured to log the telegrams into dif-
ferent files using an ECU number filter.

The logging feature can be used for debugging in environments where it is not
possible to monitor the interface (RS232, USB, Ethernet) which is used for com-
munication with UNICOM.

This type of logging is invented for debugging of a command sequence. It should
not be used with the normal production process.

6.12.1 UCBASE::LOG_SET_CHANNEL (200)

This command starts or stops a logging channel.

Command form 1, start a channel

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6
len ecu cmd opt chan max_size
N 0xC0 200 0,1 0..3 MSB LSB

byte 7 . . . byte N-2 byte N-1 byte N
logfile EOS cks
. . . 0

Command form 2, stop a channel

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
len ecu cmd opt chan cks
5 0xC0 200 0 0..3

len length of telegram
ecu target address
cmd command code
opt 0: create a new file, 1: append to exsisting file

152

UCBASE commands Logging Commands

chan number of log channel, 0..3
max_size maximum size of log file, in kBytes
logfile name of logfile
EOS end-of-string (0)
cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• After starting a channel, all commands and their response telegrams are be-
ing logged into the specified file, except file commands. This avoids a lot of
unwanted log entries generated by the file copy sequence which may often
occur at beginning of a command sequence ("first run").

• Logging of file commands can be enabled by using the LOG_SET_FILTER(200)
command if necessary (see chapter 6.12.2 on page 154).

• With same command, an ECU number can be specified which commands
are to be logged for.

• Stopping the channel will stop the log. It should be done before upload of
generated log file. However, if a sequence ends erroneously (e.g. by an
unwanted status code), the stop command can’t be executed in most cases.
Uploading the logfile is even so possible if the channel is still active.

• If opt is set to 1 (append) and no log file with the specified name exists, a
new one is being created else.

153

UCBASE commands Logging Commands

6.12.2 UCBASE::LOG_SET_FILTER (201)

This command specifies an ECU number filter for a log channel. Only commands
with matching ECU number will be logged afterwards.

Furthermode, logging of file commands can be enabled or disabled with this com-
mand.

Command

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
len ecu cmd opt chan ecunum lfc cks
7 0xC0 201 0 0..3

len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
chan log channel number where the filter is to be assigned (0..3).

channel must be active.
ecunum ECU number which commands are to be logged for. 0xFF

means no filter, all commands will be logged. This is the
default after starting a channel.

lfc "log file commands": 0: no file commands are being logged
(default), other: file commands will also be logged.

cks checksum of telegram

Response

byte 0 byte 1 byte 2 byte 3
len ecu status cks
3 0xC0

len length of telegram
ecu source address
status result status
cks checksum of telegram

Remarks

• After starting a channel, always no filter is set, and file commands are being
skipped.

• ECU filter can be used to log commands with different ECU numbers into
different logfiles, e.g. such for slot 0 (ecu = 0x80) into one file and such for

154

UCBASE commands Logging Commands

slot 1 (ecu = 0x90) into another one.

• If file command logging is enabled, and the channel is not stopped, and it is
tried to upload the logfile, all the file read commands are being logged into
the file which is currently being uploaded. That leads to a rapid increasing
of this file up to its maximum size which is defined with the LOG_SET_-
CHANNEL(200) command (see chapter 6.12.1 on page 152). So, if file
command logging is enabled, the channel shoud be stopped or file command
logging should be disabled again before starting the upload.

155

UCBASE commands Error Codes

6.13 Error Codes

The following table shows error codes that can be reported by the status field of
response telegrams and their meanings.

Error Code Description
NO_ERROR 0xA0 No error occurred
FR_ENABLE_FAILED_ERROR 0x30 FlexRay unit couldn’t be enabled (internal)
MFR4300_INIT_ERROR 0x31 A requested FlexRay POC state couldn’t be

reached
MFR4300_LOCK_ERROR 0x32 A FlexRay frame buffer couldn’t be locked

(internel)
CARD_MISSING_ERROR 0x40 No storage medium inserted
FATAL_CARD_ERROR 0x41 Storage medium error (internal)
CARD_POWER_ERROR 0x42 Error while power up of storage medium (in-

ternal)
CARD_COMMAND_ERROR 0x43 Storage Medium couldn’t finish a command

(internal)
CARD_TIMEOUT_ERROR 0x44 No response from storage medium (internal)
UNSUPPORTED_CARD_ERROR 0x45 Unsupported type of storage medium (inter-

nal)
WRONG_PIO_MODE_ERROR 0x46 Unsupported PIO mode of storage medium

(internal)
WRONG_SECNUM_ERROR 0x47 Tried to read or write a sector on storage

medium that not exists (internal)
WRONG_FIRMWARE_ERROR 0x54 Wrong or invalid firmware found while trying

to update
MISSING_CAPS_ERROR 0x55 Capability not enabled/available
FIRMWARE_VERSION_ERROR 0x56 An UCBASE version was tried to download

which is incompatible with hardware
NOT_CONFIGURED_ERROR 0x90 Service not available or not configured
WRONG_ECUNUMBER_ERROR 0x91 Wrong ECU number received command tele-

gram
RESOURCE_ERROR 0x92 resource conflict while handling multiple

modules
RESOURCE_VERSION_ERROR 0x93 requested resource version is not compatible

to this one of running ucbase version
MODULE_API_ERROR 0x94 Module doesn’t match with the Module API

of current UCBASE
BATCH_WRONG_RESP_ERROR 0x98 Not expected response telegram while execut-

ing a batch file
...continued on next page

156

UCBASE commands Error Codes

Error Code Description
BATCH_FORMAT_ERROR 0x99 corrupted batch file
BATCH_RECURSE_ERROR 0x9B try to start a batch file within another batch

file
NOT_PERMITTED_ERROR 0x9E try to execute a commend over UDP Broad-

cast but not permitted
PARAMETER_ERROR 0xB0 wrong parameter in command telegram
NO_ICMP_REPLY_ERROR 0xB1 ref. Ping(83) command (chapter 6.6.4 on

page 115)
CHECKSUM_ERROR 0xB2 wrong checksum in command telegram
LENGTH_ERROR 0xB3 wrong length of a received command tele-

gram
TIMEOUT_ERROR 0xB5 Interbyte timeout while receiving a command

telegram
ADDRESS_ERROR 0xB7 wrong address parameter in command tele-

gram
TEL_TOO_LONG_ERROR 0xB8 response exceeds maximum response tele-

gram length
FILE_ERROR 0xB9 General error while working with files
FILE_SYNTAX_ERROR 0xBA Corrupted INTEL HEX or MOTOROLA

SRECORD file (syntax)
FILE_CHECKSUM_ERROR 0xBB Corrupted INTEL HEX or MOTOROLA

SRECORD file (checksum)
CAN_BR_MISSMATCH_ERROR 0xC0 CAN bitrate not in allowed range
CAN_IN_USE_ERROR 0xC1 Tried to map more then one CAN to the same

transceiver (e.g. Single Wire CAN)
ECU_CHECKSUM_ERROR 0xC2 Response telegram from target with wrong

checksum received
ECU_LENGTH_ERROR 0xC3 Wrong response telegram length, sent by tar-

get device
ECU_RECEIVE_ERROR 0xC4 Error while receiving telegram from target de-

vice
ECU_TIMEOUT_ERROR 0xC5 No response from target device within time-

out time
ASC1_OVERRUN_ERROR 0xC6 Data overrun on serial interface connected to

target device
ASC1_BREAK_DETECTED 0xC7 Unwanted break on serial interface connected

to target device
ASC1_ECHO_ERROR 0xC8 Wrong or no communication echo on half du-

plex line
...continued on next page

157

UCBASE commands Error Codes

Error Code Description
CAN_SEQUENCE_ERROR 0xC9 STPonCAN: wrong sequence of CAN mes-

sages
CAN_FORMAT_ERROR 0xCA STPonCAN: wrong content of flow control

message
CAN_BR_NOT_SUPP_ERROR 0xCB Selected CAN bitrate is not supported
CAN_TIMEOUT_ERROR 0xCD Timeout detected while waiting on a CAN

message to receive
CAN_MESSAGE_LOST 0xCE CAN Overrun detected
NO_FD_FEATURE_ERROR 0xCF Selected CAN has no FD capability
WRONG_MODULE_ERROR 0xF0 Wrong or corrupted module file (version

missmatch)
MM_LOCKED_ERROR 0xF1 Module could not be loaded into slots 1..3 due

to existing data in RAM file system
INTERNAL_ERROR 0xFE Internal error, should never occur
UNKNOWN_COMMAND_ERROR 0xFF Unknown command code in command tele-

gram

158

	Overview
	Introduction
	UNICOM device history
	UNI-COM II/UNI-COM II+
	UNICOM3
	UNICOM4
	Software Compatibility
	Device Revisions in this Document

	What is UCBASE
	Principles
	Controlling UNICOM
	Communication with ECU
	Fast flash programming of ECU
	Interface Tester
	Other
	Available ECU Interfaces

	PC Communication with UNICOM
	Interfaces
	RS232 Interface
	USB Interface
	Ethernet Interface

	Command protocols
	STP command protocol
	XSTP command protocol

	ECU Numbers
	Why ECU Numbers?
	ECU Number Address Scheme

	STP over LAN
	Introduction
	Simple Network Protocol (UDP+TCP)
	Advanced Network Protocol (UDP only)
	Examples
	Scanning for devices, UDP Broadcast

	File System
	Basics
	File Access, Fast Mode
	Storage Medium
	RAM Filesystem

	FASTFLASH
	Basics
	Principle
	FASTFLASH protocols

	Default Settings after Power Up
	PC interfaces
	GPIO and Power Switches Default Settings
	CAN Default Settings
	FlexRay Default Settings
	Analog Input Default Settings
	LVDS Lines Default Settings

	UCBASE commands
	Configuration and Status Commands
	UCBASE::CONFIG_UNICOM (1)
	UCBASE::READ_VERSION (2)
	UCBASE::READ_STATUS (3)
	UCBASE::CONFIG_INTERFACE (4)
	UCBASE::FAST_MODE (5)

	Module Command
	UCBASE::MODULE (20,40,41,42,43)

	File related Commands
	UCBASE::CHECK_CARD (9, 10) - (3)
	UCBASE::FORMAT (9, 10) - (15)
	UCBASE::INFO (9, 10) - (16)
	UCBASE::OPEN (9, 10) - (21)
	UCBASE::SEEK (9, 10) - (22)
	UCBASE::READ (9, 10) - (23)
	UCBASE::WRITE (9, 10) - (24)
	UCBASE::CLOSE (9, 10) - (26)
	UCBASE::DELETE (9, 10) - (30)
	UCBASE::GET_DIR (9, 10) - (42)
	UCBASE::CHANGE_DIR (9, 10) - (43)
	UCBASE::MAKE_DIR (9, 10) - (44)
	UCBASE::REMOVE_DIR (9, 10) - (45)
	UCBASE::READ_DIR (9, 10) - (47)
	UCBASE::FILL (9, 10) - (57)
	UCBASE::CHECK (9, 10) - (58)
	UCBASE::CHECK32 (9, 10) - (59)
	UCBASE::CHECK_CRC (9, 10) - (60)
	Error codes of file commands

	CAN Commands
	UCBASE::ADJUST_FILLBYTES (92)
	UCBASE::CAN_FILTER (93)
	UCBASE::CAN_CONFIG (94)
	UCBASE::CLEAR_CAN (95)
	UCBASE::SEND_CAN (96)
	UCBASE::RECEIVE_CAN (97)
	UCBASE::INIT_CAN (98)
	UCBASE::MODIFY_CAN (100)
	UCBASE::STATUS_CAN (102)
	UCBASE::MULTIPLEX_CAN (103)
	UCBASE::SEND_CANFD (104)
	UCBASE::RECEIVE_CANFD (105)

	FlexRay Commands
	UCBASE::FLEXRAY_CONFIG (194)

	Network Commands
	UCBASE::ETHERNET_INIT (80)
	UCBASE::ETHERNET_STATUS (81)
	UCBASE::SELECT_PHY (82)
	UCBASE::PING (83)
	UCBASE::MAC_FILTER (84)
	UCBASE::SCAN_DEVICE (89)
	UCBASE::Factory Reset

	FASTFLASH
	UCBASE::X_FASTFLASH (14)
	UCBASE::X_FASTFLASH_TAB (15)

	Batch commands
	UCBASE::START_BATCH (30)
	UCBASE::BATCH_RESPONSE (31)
	UCBASE::BATCH_DELAY (32)
	UCBASE::BATCH_CHECK_RESPONSE (33)

	Hardware Control and Status Commands
	UCBASE::READ_ADC (66)
	UCBASE::ADC_STAT (67)
	UCBASE::CONTROL_VGPIO (70)
	UCBASE::CONFIG_GPIO (71)
	UCBASE::CONTROL_GPIO (72)
	UCBASE::READ_GPIO (73)
	UCBASE::CONTROL_PWM(75)
	UCBASE::CONTROL_VIO (77)

	Firmware Update
	UCBASE::FIRMWARE_UPDATE (126)
	UCBASE::RESET_UNICOM (127)

	Logistic
	UCBASE::READ_LOGISTICS (6)
	UCBASE::READ_CAPABILITIES (7)
	UCBASE::USERDATA (125)

	Logging Commands
	UCBASE::LOG_SET_CHANNEL (200)
	UCBASE::LOG_SET_FILTER (201)

	Error Codes

