EOL_GW Module Documentation

CSM GmbH, Filderstadt, Germany
www.csm.de/unicom/

January 17, 2023

www.csm.de/unicom/

Date Version | Name \ Changes

2013-04-11 1.0 CSM/RN | first release

2014-07-21 1.13 CSM/RN | CSM toolbox download

2015-04-17 1.14 CSM/RN | CONFIG_MODULE command
2016-08-25 2.00 CSM/RN | Commands for handling EEP-
ROM/DATA Flash of MPC based
target devices

2017-04-23 3.00 CSM/RN | EOL Packed

2017-08-09 3.01 CSM/RN | CAN FD support

2018-12-19 3.20 CSM/RN | Alternate length encoding

2023-01-17 3.30 CSM/RN | more control bits

All concepts and procedures introduced in this document are intellectual properties of CSM GmbH. Copying or usage by third parties without written
permission of CSM GmbH is strictly prohibited. All trademarks mentioned in this document are properties of their respective owners. This
document is subject to changes without notice!

<>

CcsMm

CSM GmbH Computer-Systeme-Messtechnik
Raiffeisenstrasse 36 70794 Filderstadt-Bonlanden
Phone ++49 711 77964 0 Fax ++49 711 77964 40

mailto:unicom@csm.de http://www.csm.de

Copyright © 2018 by CSM GmbH

mailto:unicom@csm.de
http://www.csm.de

Contents

1 Introduction

2 Overview

3 CANFD

4 EOL versus EOL Packed

4.1
4.2
4.3
4.4
4.5

Introduction
EOL Protocol
EOL Packed Protocol
Parallel Execution
Example with CANinterface
451 TheCommands
452 ResultingGroups Lo
453 CANTrace i it

5 Alternate Length Encoding

6 Loading and Configuration

6.1
6.2

MODULE Command
CONFIG_INTERFACE Command

7 FASTFLASH

8 EOL_GW Commands

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

EOL_GW::CONFIG_MODULE (1)o ..
EOL_GW::READ_VERSION (2)o oiii ..
EOL_GW::ADJUST_EOL_PROT (5) . .« v oot
EOL_GW:PROG_FILE (14) . . .« o o it
EOL_GW::CONTITOOLBOX_DOWNLOAD (21)
EOL_GW::CSMTOOLBOX_DOWNLOAD (22)
EOL_GW:RMEW_FIND (60)+ o oot
EOL_GW:RMEW_MODIFY (61) o o oot

15

16
16
19

20

CONTENTS CONTENTS
8.9 EOL_GW:RMEW_UPDATE((62) 35
8.10 EOL_GW:RMEW_LOAD (63) 37
8.11 EOL_GW:RMEW_CRC16(64) 39
8.12 EOL_GW:RMEW_RANGES (65). 41
8.13 EOL_GW:GATEWAY (99) 43
8.14 EOL_GW:AUTOGATEWAY (100) 45
8.15 EOL_GW:SINGLEGATEWAY (101) 46
8.16 EOL_GW:WRITE_EEPROM (104) 48
8.17 EOL_GW:READ_EEPROM (105) 49
8.18 EOL_GW:ERASE_EEPROM (106) 50
8.19 EOL_GW:ErrorCodes 51

Chapter 1

Introduction

EOL_GW is a module for extending the UCBASE software running on UNI-
COM3. It implements the End-Of-Line-Test communication protocol.

Furthermore, it can access EEPROM or DataFlash on target device in an intelligent
way by a "Read-Modify-Write" algorithm. It supports different command sets
according to the CONTI toolboxes which runs on target device (EOL protocol),
and the command set for the CSM toolboxes (via STP-on-CAN protocol).

Chapter 2

Overview

To use UNICOM3 device with EOL_GW module, UCBASE software version 2.26
(Rev.B), 3.92 (Rev.C) or 4.36 (Rev.D) or newer must be installed on UNICOM3.

The figure below shows the components of the system.

Up to 4 ECUs can be connected to one UNICOM at once.

UNICOMS3 Supply ECU Supply
— I
L]
—
CAN
<222 p| unicoms D ECU
Test USB UCBASE SW K-Line
Computer . Em—]
EOL_GW Module 1

Chapter 3

CANFD

If UNICOM’s CAN controllers are configured for CAN FD, EOL_GW module
will use CAN messages up to 64 bytes automatically (UNICOM Rev.D and with
CANI1 or 2 only). If that is not desired, use the ctrl parameter of MODULE(20)
command to suppress that (ref. chapter 6.1 on page 16).

Chapter 4

EOL versus EOL Packed

EOL versus EOL Packed Introduction

4.1 Introduction

The EOL Packed protocol is an extension of the well known End-Of-Line com-
munication protocol which allows to pack more then one command or response
telegram into one data block which is transferred between EOL Master (e.g. UNI-
COM) and the Device Under Test thru the communication interface.

It allows to reduce time latency problems and enables the device under test to
execute commands asynchrounously and parallel of communication.

Main goal is to save time while executing the EOL Test that way.

EOL versus EOL Packed

EOL Protocol

4.2 EOL Protocol

EOL Protocol is a Telegram based Transport Protocol that consists of

 aheader part which contains a length information (2 bytes, LSB first, number
of following bytes including checksum),

* apayload area,

* an XOR checksum (1 byte) which is computed over the header part and the

payload area.

byte 0 | bytel | byte2 byte N-1 | byte N
length payload 1 payload n cks
LSB | MSB

The payload area contains a command code and parameters (Command Telegram)

respectively a status code and additional data (Response Telegram).

The exchange of EOL telegrams are strong causatively and sequencially. The EOL
Master (e.g. UNICOM) is initiator of every transfer by sending a Command Tele-
gram to Device under Test, and Device under Test sends a Response Telegram with
the results after executing the command.

This approach leads to a lot of small data blocks which are exchanged alternately

in both directions between EOL Master and Device under Test.

With block based communication interfaces as CAN or FlexRay that could result
in unwanted delays because of latency effects, or, with CAN FD, the high speed
phase is too short for significantly speeding up the transfer.

EOL versus EOL Packed EOL Packed Protocol

4.3 EOL Packed Protocol

The EOL Packed Protocol allows to concatenate more then one EOL telegrams
to one data block ("Command Group", Response Group"), which could be much
larger then one EOL telegram itself. This data block is being transferred at once.
That reduces effects of time latency of used interface and takes advantange of inter-
faces that use a special bitrate for transferring payload data in difference to trans-
ferring the administration data (e.g. CAN FD).

Further more, it is possible for the Device under Test to receive a Command Group,
execute the commands and send the Response Group nearly in parallel (offset by
one command), if the communication interface allows that.

An EOL Packed Protocol Group consists of
* one or more EOL Telegrams

* an optional stop delimiter, consisting of two 0 bytes

byteO\ byte 1 byteZ\ ‘ byte x | byte x

length 1 payload 1 cks 1
LSB | MSB |]
bytex\ byte x bytex\ \ byte x | byte x
length 2 payload 2 cks 1
LSB | MSB |]
bytex | bytex | bytex | ... | bytex | byte N-2
length n payload n cksn
LSB | MSB | ..]
byte N-1 | byte N
delim
0o [o

10

EOL versus EOL Packed

4.4 Parallel Execution

As mentioned above, with the EOL Packed Protocol, the Device under Test can
receive commands, execute them and send response telegram quasi in parallel using
the "pipelining" effect arised by placing more then one command telegrams directly

after another:

command 1

command 2

command 3

command 4

execute 1

execute 2

execute 3

response 1

response 2

11

Parallel Execution

EOL versus EOL Packed Example with CAN interface

4.5 Example with CAN interface

The following example shows 3 fictive EOL commands packed into a Command
Group, and the resulting Response Group. For transferring the groups, the CAN
interface ist used.

4.5.1 The Commands

These are the 3 example command telegrams and their response telegrams, in un-
packed EOL protocol.

Command 1

byte 0 \ bytel | byte2 | byte3 | byte4 | byteS5 | byte 6
length cmd data data data cks
0x05 \ 0x00 0x99 | OxAA | OxFF OxFF 0x36

Response 1

byte 0 \ byte1l | byte2 | byte3 | byte 4
length status cmd cks
0x03 \ 0x00 0xA0 0x99 0x3A

Command 2

byte 0 \ bytel | byte2 | byte3 | byte 4
length cmd data cks
0x03 \ 0x00 0x01 0x02 0x00

Response 2

byte 0 \ byte1 | byte2 | byte3 | byte4
length status cmd cks
0x03 | 0x00 | 0xAO | 0x01 | 0xA2

Command 3

byte 0 \ byte1 | byte2 | byte3 | byted4 | byte5 | byte6
length cmd data data data cks
0x05 | 0x00 | 0x02 | OxFF | OxFF | OxFF | OxF8

Response 3

byte 0 | bytel | byte2 | byte3 | byte4
length status cmd cks
0x03 | 0x00 | 0xAO [0x01 | OxAl

12

EOL versus EOL Packed Example with CAN interface

4.5.2 Resulting Groups

Command Group

byte 0 | bytel | byte2 | byte3 | byted | byte5 | byte6
length cmd data data data cks
0x05 | 0x00 | 0x99 | OxAA | OxFF | OxFF | 0x36
byte7 | byte8 | byte9 | byte10 | byte 11
length cmd data cks
0x03 \ 0x00 0x01 0x02 0x00
byte 12 | byte 13 | byte 14 | byte 15 | byte 16 | byte 17 | byte 18
length cmd data data data cks
0x05 ‘ 0x00 0x02 OxFF OxFF OxFF 0xF8
byte 19 | byte 20
delim
0x00 [0x00
Response Group
byte 0 | byte1 | byte2 | byte3 | byte4
length status cmd cks
0x03 \ 0x00 0xA0 0x99 0x3A
byte 5 \ byte 6 | byte7 | byte8 | byte9
length status cmd cks
0x03 \ 0x00 0xA0 0x01 0xA2
byte 10 | byte 11 | byte 12 | byte 13 | byte 14
length status cmd cks
0x03 | 0x00 | O0xAO | 0x01 | OxAl
byte 15 | byte 16
delim
0x00 [0x00

4.5.3 CAN Trace

The following CAN trace shows the resulting CAN messages for transferring the
command group and the response group.

; Message Time Type ID Rx/Tx
; Number Offset | [hex] | Data Length
N [ms] I | I

Data [hex]
; | | | | [.

13

EOL versus EOL Packed

Example with CAN interface

14

Rx
Rx
Rx
Rx
Rx
Rx

= 00 00 O1 00 00 +

00
01
FF
00
A2

99
02
F8
AO
03

AA
00
00
99
00

FF
05
00
3A
AO

FF
00

03
02

36
02

00
Al

03
FF

AO
00

Chapter 5

Alternate Length Encoding

As described in the previous chapter, the length of an EOL telegram is encoded in
the first two bytes, LSB first. With the original specification, only 14 bits are being
used for the length information. Bit 14 and 15 of the 16-bit-word which consists
of the 2 first bytes are reserved for addressing different components of DUT.

Since this addressing mechanism is used very seldom at one hand, and the size of
EOL toolboxes (which are big EOL telegrams) has been grown beyond the size of
16 kBytes (which can be realized with the 14 bits) at the other hand, bit 14 and 15
are often used to extend the maximum telegram size. With all the 16 bits a toolbox
size of 64 kBytes can be realized. However, only one internal component of DUT
can be addressed this way.

Furthermore, since most of other known telegram protocols are using data chunks
with MSB first (e.g. UDS protocol), it should be also possible to encode the length
information with 2 bytes, MSB first.

All these different encodings of the length information are realized by the EOL_GW
module by using its ADJUST_EOL_PROT(5) command (ref. chapter 8.3 on page 24).

15

Chapter 6

Loading and Configuration

6.1 MODULE Command

This command downloads and runs the EOL_GW module.

Command, form 1 (unload module)

byte 0 | byte 1 byte 2 byte 3
len ecu cmd cks
3 0xCO | 20,40..43

Command, form 2 (load module, CAN communicaion)

Command, form 3 (load module, CAN communicaion, packed)

byte 0 | byte 1 byte 2 byte 3 byte N-4 | byte N-3
len ecu cmd mod 1 modm | EOS mod
N=m+6 | 0xCO | 20,40..43 0
byte N-2 | byte N-1 | byte N
IMD cks
MSB | LSB

byte 0 | byte 1 byte 2 byte 3 byte N-4 | byte N-3
len ecu cmd mod 1 mod m | EOS mod
N=m+7 | 0xCO | 20,40..43 0
byte N-3 ‘ byte N-2 | byte N-1 | byte N
IMD ctrl cks
MSB | LSB

16

Loading and Configuration MODULE Command

Command, form 4 (load module, K-Line communicaion)

byte 0 | bytel byte 2 byte3 | ... | byte N-6 | byte N-5
len ecu cmd mod1 | ... modm | EOS mod
N=m+8 | 0xCO | 20,40..43 0
byte N-4 | byte N-3 | byteN-2 | byte N-1 | byteN
IMD BR_10 cks
MSB | MSB | LSB

len length of telegram

ecu target address

cmd command code

mod filename of module (here: eol_gw.mod)

EOS mod end-of-string of module filename (0)

IMD Inter Message Delay, Time delay between two CAN mes-
sages resp. two bytes sent over K-Line

ctrl Bit 0,1: 0: normal EOL, 1: packed, 3: packed with delim-
iter.

If bit 2 is set, maximum CAN message size is limited to 8
bytes even if CAN FD is enabled.

If bit 3 is set, GATEWAY (99) command always waits for a
new CAN message and drops remaining bytes of the previ-
ously received one.

BR_10 Baud rate divided by 10 for K-Line. If this parameter is
specified, the EOL_GW module uses the K-Line interface
for communication instead of CAN bus.

cks checksum of telegram

Response

byte 0 | bytel | byte2 | byte3

len ecu status cks
3 0xCO

len length of telegram

ecu source address

status result status

cks checksum of telegram

Remarks

* Before the EOL_GW module can be applied, the CAN controller(s) that
should be used for EOL protocol must be configured properly with the com-

17

Loading and Configuration MODULE Command

mands INIT_CAN(98) and CAN_CONFIG(94) of the UCBASE software.

* After loading the module, at least one interface slot mut be configured for
MODULE interface using the CONFIG_UNICOM(1) command of UCBASE
software. Per default, the number of slot is correlated with the number of
CAN controller that is used for EOL protocol: slot 0 uses CAN 1, slot 1 uses
CAN 2 and so on. The mapping of CAN controllers can be changed with the
CONFIG_INTERFACE(4) command.

* if K-Line is activated (using form 3 of MODULE command), VIO2 (second
K-Line interface) is always used independently of the slot.

* EOL Packed protocol can’t be used together with force8 (ref. CONFIG._-
INTERFACE, chapter 6.2 on page 19).

18

Loading and Configuration CONFIG_INTERFACE Command

6.2 CONFIG_INTERFACE Command

The CONFIG_INTERFACE command can configure an interface that is activated
at the specified slot. If slot is configured for MODULE interface and the EOL_GW
module is loaded, the EOL_GW module can configured this way.

Command
byte 0 | bytel | byte2 | byte3 | byted4 | byte5 | byte 6
len ecu cmd slot CAN | force8 cks
6 0xCO 4 0.3 1.4 0,1
len length of telegram
ecu target address
cmd command code
slot slot of interface to configure
CAN CAN controller that is assigned to the slot (default: slot+1)
force8 if unequal to 0, all CAN messages are 8 bytes in size even
if not needed.
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 0xCO
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* See ucbase.pdf for more information about interfaces, slots and their ad-
dressing via ECU numbers

19

Chapter 7

FASTFLASH

No FASTFLASH is implemented by the EOL_GW module.

20

Chapter 8

EOL_GW Commands

8.1 EOL_GW::CONFIG_MODULE (1)

With this command, parameters of the module can be adjusted. The command
is used for defining an offset inside of a CSM toolbox file where parameters are
to be patched while downloading the toolbox using the CSMTOOLBOX_DOWN-
LOAD(22) command (ref. chapter 8.6 on page 30).

An alternate form selects the EOL command set for accessing the EEPROM tool-
box on target device.

Command (form 1, set parameter offset)

byte 0 | bytel | byte2 | byte3 \ byte 4 | byte S
len ecu cmd param_offset cks
5 XX 1 MSB | LSB

Command (form 2, set eol parameters)

byte 0 | bytel | byte2 | byte3 | byte4 | byteS | byte6
len ecu cmd type CS HOLDQ cks
6 XX 1 1,2,3,4
len length of telegram
ecu target address
cmd command code
param_offset offset of parameter start in file, in bytes
type type of EOL command set and protocol:

0: command set type "SPI" (EOL protocol)
1: command set type "PICTUS" (EOL protocol)

21

EOL_GW Commands EOL_GW::CONFIG_MODULE (1)

2: command set type "PICTUS" with 4-byte-alignment (EOL
protocol)

3: command set type "CSM" (STP-on-CAN protocol)

pin code for chip select of an SPI EEPROM (toolbox depen-
dent, only used with type = 1)

pin code for hold pin of an SPI EEPROM (toolbox depen-
dent, only used with type = 1)

CS

HOLDQ

cks checksum of telegram
Response

byte 0 | bytel | byte2 | byte3

len ecu status cks
3 XX

len length of telegram

ecu source address

status result status

cks checksum of telegram
Remarks

* The offset must be computed including the leading EOL Header which is
added in front of toolbox while downloading (ref. CONTITOOLBOX_-
DOWNLOAD(21) command, chapter 8.5 on page 29).

* If param_offset is set to O (default after startup of module) it is assumed that
parameters start right behind the Security Bytes and the JMP area.

* The offset depends on the used toolbox. Refer to the toolbox documentation.

* The EEPROM/DataFlash commands are only accessable only if at least one
of this command (form 2) has been executed.

22

EOL_GW Commands EOL_GW::READ_VERSION (2)

8.2 EOL_GW::READ_VERSION (2)

This command reports about the module version information.

Command
byte 0 | byte1l | byte2 | byte3
len ecu cmd cks
3 XX 2
len length of telegram
ecu target address
cmd command code
cks checksum of telegram
Response
byte0) | bytel | byte2 | byte3 | ... byte 18 | byte 19
len ecu status ver 1 ver 16 check
19 XX
len length of telegram
ecu source address
status result status
ver 1..16 version string
cks checksum of telegram
Remarks

* As version string eol_gw_ oV . yy should be reported.

23

EOL_GW Commands EOL_GW::ADJUST_EOL_PROT (5)

8.3 EOL_GW::ADJUST_EOL_PROT (5)

With this command, the encoding of length information of the EOL telegrams can

be adjusted.
Command
byte0 | bytel | byte2 | byte3 | byted4 | byteS5
len ecu cmd lenbits order cks
5 XX 5 14,15,16 0,1
len length of telegram
ecu target address
cmd command code
lenbits number of bits of the first 2 bytes which are used to encode
the length information (14..16). Default: 16.
order byte order of length information. 0: LSB first (default), 1:
MSB first
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* After loading the EOL_GW module, 16 bits are being used for telegram
length information, and the byte order is LSB first.

* All commands of EOL_GW module are automatically using the adjusted
settings, however, there are two exceptions:

— GATEWAY(99) command (ref. chapter 8.13 on page 43): Since the
telegram lengths are component of the specified EOL telegrams which
have to be sent, the byte order must match with the adjusted one.

— CONTITOOLBOX_DOWNLOAD(21) (ref. chapter 8.5 on page 29):
The toolbox file must contain a length information which matches with
the adjusted one.

24

EOL_GW Commands EOL_GW::ADJUST_EOL_PROT (5)

* Have a look at chapter 5 on page 15 chapter for more information.

25

EOL_GW Commands

EOL_GW::PROG_FILE (14)

8.4 EOL_GW::PROG_FILE (14)

With this command, programming data residing on a file in UNICOM’s storage
medium can be transferred to the target device using EOL commands for program-

ming external EEPROMs or DataFlash.

Command
byte 0 | bytel | byte2 | byte3 | byte4 | byte5
len ecu cmd opt dummy | dummy
N=n+7 XX 14 0,1 0 0
byte 6 byte N-2 | byte N-1 | byte N
file 1 file n EOS cks
0
len length of telegram
ecu target address
cmd command code
opt controls whether data of file are being programmed (0) or
verified (1)
dummy not used here, should be 0
file Name of file that contains the programming data
€os End-Of-String, must always be 0
cks checksum of telegram

Response (form 1: Program mode, Verify OK)

byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX

Response (form 2: Verify failed)

byte 0 byte1 | byte2 | byte3 \ byte 4
len ecu status failent
N=5+4n | xx | OxF8 | MSB | LSB
byte5 | ... | byte8
addr 1
MSB [... | LSB
byte N-4\] byte N-1 | byte N
addr n cks
MSB | ...| LSB

26

EOL_GW Commands EOL_GW::PROG_FILE (14)

len length of telegram
ecu source address
status result status
failent number of failed verify locations (max. 65535)
addrl..n 32 bit EEPROM address values where verify has failed (max.
60)
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

* With Verify Mode, the response telegram contains the first 60 occurred (max.)
32bit address values where verify operation has been failed (limited by the
response telegram length). However, the failcnt parameter reports about the
real number of failed verify operations.

File Format

The format of file that contains programming or verify data is in ASCII and looks
like follows:

First part of file is the DIFF section that starts with the keyword
[DIFF]
This sections defines tolerances for single EEPROM bytes:

0xO0XXXXX, INT, -AA TO +BB
0x00YYYYY, INT, -CC TO +DD

First parameter of such a line is the EEPROM address in C notation, followed by
the numerical type, and the tolerance range as decimal number (signed value).

After the DIFF section, the EEPROM section follows, beginning with the keyword
[EEPROM]

This section contains the EEPROM data, organized in lines, beginning with the
destination address in EEPROM and followed by a variable number of data bytes:

27

EOL_GW Commands EOL_GW::PROG_FILE (14)

OxOOXXXXX AA BB CC DD ...
0xO00YYYYY EE FF GG HH ...

Only such lines with an address value in C notation in front are kept in mind by the
module, all other additional information are ignored.

For data verification, some more special characters are allowed:
If a data byte doesn’t consist of two hex digits but of
XX L.
The corresponding value in EEPROM is ignored ("don’t care byte").

If a data byte consists of an X and a valid digit (0..F), the nibble that is specified
by the X is ignored while verification:

. Xa

where a is 0..F, means that only the low nibble of EEPROM data is verified against
a.

ak ...,

where a is 0..F, means that only the high nibble of EEPROM data is verified against
a.

If a data byte is enclosed in brackets like this:
[AB]

means that a tolerance defined in the DIFF section should be applied. This toler-
ance definition must exist and must have the same address value where the data
byte belongs.

For programming the EEPROM, the data file must not contain such special char-
acters (a syntax error is reported else). Further more, a DIFF section is ignored for
programming. If the DIFF section is absent in a file that is used for verify, the mod-
ule treats that like an empty DIFF section (no tolerances defined). The EEPROM
section must always exist.

28

EOL_GW Commands EOL_GW::CONTITOOLBOX_DOWNLOAD (21)

8.5 EOL_GW::CONTITOOLBOX_DOWNLOAD (21)

With this command, a toolbox file can be downloaded to the target device.

Command
byte0 | bytel | byte2 | byte3 | ... | byte N-2 | byte N-1 | byte N
len ecu cmd tbx 1 .. tbx n EOS cks
N=4+n XX 21 ... 0

len length of telegram
ecu target address
cmd command code
tbx name of toolbox file on UNICOM’s storage medium
EOS End-Of-String, 0
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3 \ \ byte N-1 | byte N
len ecu status eolresp cks
N XX ‘ ... ‘
len length of telegram
ecu source address
status result status
eolresp "logical" response telegram from target without length bytes
in front and checksum at the end
cks checksum of telegram
Remarks

* The toobox file must be in the form as CONTI provides it: Length (2 bytes),
Header (0x10E bytes), toolbox code, checksum (1 byte), optional comments

in ASCII.

29

EOL_GW Commands EOL_GW::CSMTOOLBOX_DOWNLOAD (22)

8.6 EOL_GW:CSMTOOLBOX_DOWNLOAD (22)

With this command, a toolbox file in CSM format can be downloaded using the

EOL protocol.
Command
byte 0 | bytel | byte2 | byte3 | ... | bytea | byteb
len ecu cmd tbx 1 . tbx n €o0s
N XX 22 e 0
bytec | byted | bytee | ... | byteN-1 | byteN
eol_hs parl | ... par m cks
MSB | LSB
len length of telegram
ecu target address
cmd command code
tbx name of toolbox file on UNICOM’s storage medium
EOS End-Of-String, 0
eol_hs (optional) EOL header size, default: 0x0110
par (optional) up to 30 bytes of parameters that configure the
downloaded toolbox. If used, the eol_hs must also be spec-
ified.
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

¢ CSM toobox files come without EOL header in front, and without checksum
at end. Both of them are being generated automatically while downloading.

* CSM toolboxes can be configured using the par parameter field.

30

EOL_GW Commands

EOL_GW::RMEW_FIND (60)

8.7 EOL_GW::RMEW_FIND (60)

With this command, sequences of data bytes can be found in EEPROM.

Command (form 1, normal search)

byte 0 | bytel | byte2 | byte3 | byted | ... | byte7
len ecu cmd opt addr
N=8+n | xx 60 0 MSB | ... | LSB
byte 8 byte N-1 | byte N
data 1 datan cks
Command (form 2, extended search)
byte0 | bytel | byte2 | byte3 | byte4 | ... | byte7
len ecu cmd opt addr
N=12+n | xx 60 1 MSB | ... | LSB
byte8 | ... | byte1l | byte 12 byte N-1 | byte N
eddr data 1 data n cks
MSB | ... | LSB
len length of telegram
ecu target address
cmd command code
opt 0: normal form, 1: extended form
addr EEPROM start address (0x00800000..0x0080FFFF)
eaddr EEPROM end address (with extended search only)
data data byte sequence that is to be found
cks checksum of telegram
Response
byte 0 byte1l | byte2 | byte3 \ \ byte 6
len ecu status addr 1
N=3+4n | xx MSB | ... | LSB
byteN-4 | ... | byteN-1 | byteN
addr n cks
MSB |...| LSB
len length of telegram
ecu source address

31

EOL_GW Commands EOL_GW::RMEW_FIND (60)

status result status
addr EEPROM addresses of occurence of searched data byte se-
quence
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

* All searched EEPROM pages are loaded into the modification buffer and can
modified without delay thereafter using the RMEW_MODIFY (61) com-
mand (ref. chapter 8.8 on page 33).

* With the extended form (opt = 1), all match addresses where the data byte se-
quence occurs in EEPROM, up to the end address (eaddr) are being reported.
If more matches occur then fit into the response telegram, the remaining ones
are being cut, and a response status of "OxF7" (TOO_MUCH_MATCHES_-
ERROR) is being reported. In order to fetch the remaining occurrences,
repeat the command with a start address of one byte behind the last reported
occurrence.

32

EOL_GW Commands EOL_GW:RMEW_MODIFY (61)

8.8 EOL_GW:RMEW_MODIFY (61)

This command reads (if not yet done) one EEPROM/DataFlash page from target
device, stores it into UNICOM’s data buffer and modifies the data according to the
command telegram in UNICOM’s data buffer only.

Command
byte 0 | bytel | byte2 | byte3 | byted4 | ... | byte?
len ecu cmd opt addr
N=8+n | xx 61 0 MSB | ... | LSB
byte8 | ... | byte N-1 | byte N
datal | ... data n cks
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
addr Destination address of the data block in EEPROM
data data bytes which should be programmed
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

* If the addresses page is already loaded, only the data modification in UNI-
COM’s buffer is done.

33

EOL_GW Commands EOL_GW:RMEW_MODIFY (61)

* After finishing the modifications, the target EEPROM/DataFlash must be
updated with the RMEW_UPDATE (62) command (ref. chapter 8.9 on
page 35). All changes are being lost else!!

34

EOL_GW Commands EOL_GW::RMEW_UPDATE (62)

8.9 EOL_GW:RMEW_UPDATE (62)

This command erases EEPROM/DataFlash pages which correspond to the changed
data in UNICOM’s buffer memory and programs the changed data areas from
buffer to target’s EEPROM/DataFlash.

Command form 1, with buffer reset

byte 0 | byte 1

byte 2 | byte 3

len ecu

status cks

3 XX

Command form 2, with possible buffer reset

byte 0 | bytel | byte2 | byte3 | byte4
len ecu cmd reset cks
4 XX 62 0/1
len length of telegram
ecu target address
cmd command code
reset 0: keep data in buffer (default)
1: reset (discard) data in buffer
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

35

EOL_GW Commands EOL_GW::RMEW_UPDATE (62)

* The command only erases and programs EEPROM/DataFlash pages (0x4000
bytes in size) where the corresponding data in UNICOM’s buffer memory
have changed, and the data of page are not OxFF

* In each page, data is programmed beginning with the first byte that is not
OxFF and ending with the last byte that is not OxFF.

* This command must be executed after finishing the modifications with RM-
EW_MODIFY (61) (ref. chapter 8.8 on page 33), all modifications where
lost else.

* If the reset parameter is set to 1, all stored data in buffer will be discarded.
A next read operation (search, CRC16 etc.) will read data from target again.

36

EOL_GW Commands

EOL_GW::RMEW_LOAD (63)

8.10 EOL_GW::RMEW_LOAD (63)

This command fills the buffer of UNICOM completely with OxFF and pre-charges
it afterwards with data from an SRECORD file. It marks all pages of the buffer as
"loaded" and "modified" so that an RMEW_UPDATE command will program the
entire buffer into EEPROM/DataFlash of target afterwards.

Command
byte 0 | bytel | byte2 | byte3 | byte4 byte 7 | byte N-1 | byte N
len ecu cmd opt file 1 file n €0s cks
N=4+n XX 63 0 0
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
file name of file that is to be loaded, type SRECORD
eos End-Of-String, 0
cks checksum of telegram
Response
byte 0 | byte1l | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

* The command should be used in scope with the RMEW_MODIFY (61) (ref.
chapter 8.8 on page 33) when a default content of EEPROM/DataFlash is

37

EOL_GW Commands EOL_GW::RMEW_LOAD (63)

given with a file and some modifications must be done which are different
on each target device.

38

EOL_GW Commands EOL_GW::RMEW_CRC16 (64)

8.11 EOL_GW::RMEW_CRC16 (64)

This command computes the CSM CRC16 checksum over the current content of
buffer on UNICOM. If pages of buffer are not yet loaded where the computation
should take place, the command reads the data from target’s EEPROM/DataFlash
automatically before.

Command
byte 0 | bytel | byte2 | byte3 | byte4 \ \ byte 7
len ecu cmd opt saddr
12 XX 64 0 MSB | ... | LSB
byte 8 \ \ byte 11 | byte 12
eaddr cks
MSB | ... | LSB
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
saddr EEPROM address where the CRC16 computation begins
eaddr EEPROM address where the CRC16 computation ends
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3 \ byte 4 | byte 5
len ecu status crcl6 cks
5 XX MSB | LSB
len length of telegram
ecu source address
status result status
crcl6 computation result
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

39

EOL_GW Commands EOL_GW::RMEW_CRC16 (64)

* The polynomial of CRC16 computation is 0xA001, the start value is 0x4353.

40

EOL_GW Commands

EOL_GW::RMEW_RANGES (65)

8.12 EOL_GW::RMEW_RANGES (65)

With this command, address ranges can be defined where target’s EEPROM/Data-
Flash contains "OxFF" data only. If a page is being loaded from target, these ranges
are skipped, and the buffer of UNICOM is filled with OxFF directly. That may
shorten the page loading time rapidly.

Command
byte 0 byte1l | byte2 | byte3

len ecu cmd opt

N=448-n XX 65 0
byte4 | ... | byte7 | byte8 | ... | bytell
saddr 1 eaddr 1
MSB [... | LSB [MSB | ... | LSB
byteN-8 | ... | byteN-5 | byteN-4 | ... | byteN-1 | byteN
saddr n eaddr n cks
MSB | ... | LSB MSB | ...| LSB
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
saddr EEPROM address where the "0OxFF" range begins
eaddr EEPROM address where the "0xFF" range ends
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks

3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram

41

EOL_

GW Commands EOL_GW::RMEW_RANGES (65)

Remarks

Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed

successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

Up to 6 ranges can be defined this way
Ranges must not overlap and must be defined in ascending order

The command deletes previously defined ranges. As consequence, if no new
ranges are being defined with the command (n = 0), only previously defined
ranges are being deleted.

The command should always executed once before one of the other RMEW...
commands

42

EOL_GW Commands EOL_GW:: GATEWAY (99)

8.13 EOL_GW::GATEWAY (99)

With this command, a set of multiple EOL commands can be sent at once to the
target device.

Command
byte 0 | bytel | byte2 | byte3 | byted4 | byte5 | byte6 | ... | ...
len ecu cmd | delay 1 to 1 resp 1 command 1
N XX 99
byte w | bytex | bytey | bytez \ \ ... | byteN
delay n ton resp n command n cks
len length of telegram
ecu target address
cmd command code
delay x time delay in milliseconds before sending the command x
to x timeout time in 100 milliseconds for receiving the response
telegram x
resp x number of expected response telegrams after sending com-

command x

mand x
the EOL command x, consisting of

* Length (2 bytes, LSB first), number of bytes that fol-
low including checksum

* Command Code (1 byte)
e Parameters

* place holder for EOL checksum (dummy)

bytex | ... | ... | byteN
resp n cks

cks checksum of telegram
Response
byte 0 | byte1 | byte 2 byte 3 byte 4 \ ces \ ces
len ecu status | rec_status resp 1
N XX
len length of telegram
ecu source address

43

EOL_GW Commands EOL_GW:: GATEWAY (99)

status result status
rec_status receive result status
resp x Response telegram x, consisting of length, status code, pa-
rameters and checksum in the same form as the command x
(s. above).
cks checksum of telegram
Remarks

* The checksum place holder in command x can contain any value, the real
checksum is computed by the EOL_GW module.

* If command x should be sent but no response is being expected, the resp
parameter must be set to 0. to is dummy in this case and should be set to 0,
too.

 If a response x is expected but no command x should be sent, the command
x field only have to consist of the length (2 bytes) which must be 0.

 If more then one target devices that are connected to different CAN buses of
UNICOM should be proceeded in parallel, the following flow can be used:

— Send a GATEWAY command with a set of EOL commands over each
slot where a target device is connected. Set to x and resp x to 0, means
that no response telegrams are expected for the moment.

— The target devices execute the commands in parallel and send the re-
sponse telegrams back to the UNICOM where they are being stored
temporarily.

— Send a GATEWAY command to each slot that contains a number of
empty EOL commands (length = 0) according to the exepected num-
ber of response telegrams from target devices. That fetches the stored
response telegrams.

44

EOL_GW Commands EOL_GW::AUTOGATEWAY (100)

8.14 EOL_GW::AUTOGATEWAY (100)

With this command, a single EOL command can be easily sent without care about
length and checksum of EOL telegram, and receive the response telegram from
target device in the same way.

Command
byte 0 | bytel | byte2 | byte3 | ... | ... | byteN
len ecu cmd command cks
N XX 100
len length of telegram
ecu target address
cmd command code
eolemd "logical" EOL command without length bytes in front and
checksum at the end
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3 | ... | ... | byteN
len ecu status response
N XX
len length of telegram
ecu source address
status result status
eolresp response telegram in the same form as eolcmd, s. above
cks checksum of telegram
Remarks

* The command realizes a very simple way to send and receive EOL telegrams.
* With every EOL command, exactly one EOL response is expected

* The receive timeout is that one which is configured with the CONFIG_UNICOM(1)
command (Command Timeout).

* Parallel executing of EOL commands is not possible that way.

45

EOL_GW Commands EOL_GW::SINGLEGATEWAY (101)

8.15 EOL_GW:SINGLEGATEWAY (101)

With this command, a single EOL command can be sent without care about length
bytes and checksum. In difference to AUTOGATEWAY (chapter 8.14 on page 45),
the receive timeout is adjustable, a separate receive status is reported and sending
without receiving and vice versa is possible.

Command
byte 0 | bytel | byte2 | byte3 | byte4 \ 50C \ ... | byteN
len ecu cmd to eolcmd
N XX 101
len length of telegram
ecu target address
cmd command code
to receive timeout in 100 milliseconds
eolemd "logical" EOL command without length bytes in front and
checksum at the end
cks checksum of telegram
Response
byte 0 | byte1 | byte 2 byte 3 byte 4 \ 50C \ ... | byteN
len ecu status | rec_status eolresp
N XX
len length of telegram
ecu source address
status result status
rec_status receive result status
eolresp response telegram in the same form as eolcmd, s. above
cks checksum of telegram
Remarks

* If an EOL command should be sent without expecting a response telegram,
to parameter is set to 0.

* If aresponse telegram should be received without sending an EOL command
before, eolcmd must be skipped.

 If more then one target devices that are connected to different CAN buses of
UNICOM should be proceeded in parallel, the following flow can be used:

46

EOL_GW Commands EOL_GW::SINGLEGATEWAY (101)

— Send a SINGLEGATEWAY command over each slot where a target
device is connected. Set to to 0, means that no response telegram is
expected for the moment.

— The target devices execute the command in parallel and send their re-
sponse telegrams back to the UNICOM where they are being stored
temporarily.

— Send a SINGLEGATEWAY command to each slot without eolcmd but
with to not set to 0. That fetches the stored response telegrams.

47

EOL_GW Commands EOL_GW::WRITE_EEPROM (104)

8.16 EOL_GW::WRITE_EEPROM (104)

This command programs data bytes into the EEPROM/DataFlash directly without
buffering.

Command
byte 0 | bytel | byte2 | ... | byte5 \ \ byte 8
len ecu cmd opt addr
N=8+n | xx 104 0 | MSB [... | LSB
byte9 | ... | byte N-1 | byte N
datal | ... datan check
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0.
addr destination address of the data block in EEPROM
data data bytes which should be programmed
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

48

EOL_GW Commands

EOL_GW::READ_EEPROM (105)

8.17 EOL_GW::READ_EEPROM (105)

This command reads data from EEPROM/DataFlash directly without buffering

Command
byte 0 | bytel | byte2 | byte3 | byted | ... | byte7
len ecu cmd opt addr
10 XX 105 0 MSB [... | LSB
byte 8 \ byte 9 | byte 10
size cks
MSB | LSB
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
addr source address in EEPROM
size number of bytes to read
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3 | ... | byte N-1 | byte N
len ecu status | datal | ... data n cks
N=3+n XX
len length of telegram
ecu source address
status result status
data requested data bytes from EEPROM
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

49

EOL_GW Commands EOL_GW::ERASE_EEPROM (106)

8.18 EOL_GW::ERASE_EEPROM (106)

This command erases parts of EEPROM/DataFlash

Command
byte 0 | bytel | byte2 | byte3 | byted | ... | byte7
len ecu cmd opt addr
10 XX 106 0 MSB [... | LSB
byte 8 \ byte 9 | byte 10
size cks
MSB | LSB
len length of telegram
ecu target address
cmd command code
opt not used here, should be 0
addr start address of EEPROM range that should be erased
size size of EEPROM range to be erased
cks checksum of telegram
Response
byte 0 | bytel | byte2 | byte3
len ecu status cks
3 XX
len length of telegram
ecu source address
status result status
cks checksum of telegram
Remarks

* Before this command can be used, the EOL_GW module must be config-
ured using the CONFIG_MODULE(1) command form 2 (ref. chapter 8.1
on page 21), target must be in EOL mode (SEED/KEY entry must be passed
successfully), and the EEPROM programming toolbox must be downloaded
by using CONTITOOBOX_DOWNLOAD(21) (ref.chapter 8.5 on page 29).

* Some of EEPROM/DataFlash devices can’t be erased byte wise but block
wise where the block size depends on the memory type. In this case, all
blocks will be erased which are touched by the specified range.

50

EOL_GW Commands

EOL_GW::ErrorCodes

8.19 EOL_GW::ErrorCodes

The following table describes possible error codes reported by the status of the

response telegrams, and their meanings.

Error \ Code \ Description
NO_ERROR 0xAO | No error occurred
NOT_CONFIGURED_ERROR 0x90 | Requested service not available
PARAMETER_ERROR 0xBO | Wrong parameter in command
telegram
LENGTH_ERROR 0xB3 | Wrong command telegram
length
FILE_ERROR 0xB9 | Error while opening or accessing
file
CAN_TIMEOUT_ERROR 0xCD | CAN timeout while sending or
receiving
TX_OVERFLOW_ERROR OxE2 | specified length code exceeds
telegram length (GATEWAY
command)
RX_FORMAT_ERROR OxES | format error while receiving
EOL telegram
RX_OVERFLOW_ERROR OxE6 | received eol telegram exceeds
receive buffer in UNICOM
RX_CHECKSUM_ERROR OxE7 | EOL telegram with wrong
checksum received
EOL_WRONG_RESPONSE_ERROR | 0xE8 | While PROG_FILE, target de-
vice answered with a wrong re-
sponse telegram
EOL_INCONS_RESPONSE_ERROR | 0xE9 | inconsistent EOL telegram re-
sponse from target received
SIZE_MISSMATCH_ERROR OxEA | wrong size of target response
ECU_TEL_TOO_LONG_ERROR OxEF | length of STP response of target
is too large
TOO_MUCH_MATCHES_ERROR OxF7 | too much matches with the
RMEW_FIND command to fit
into response telegram
VERIFY_ERROR 0xF8 | PROG_FILE command in verify
mode: verify failed
RANGE_BUFFER_OVL_ERROR 0xF9 | More then 20 ranges are defined
in the DIFF section of verify file
RANGE_NOT_FOUND_ERROR O0xFA | Range delimiter occurred but not

matching range defined in verify
file

51

EOL_GW Commands

EOL_GW::ErrorCodes

Error \ Code \ Description

RANGE_OVL_ERROR OxFB | Range doesn’t fit with byte
(overflow while adding mini-
mum or maximum value of
range)

EEPROM_SECTION_ERROR O0xFD | No [EEPROM] section found in
file

NOT_MATCH_ERROR OxFE | data byte sequence not found in
EEPROM

UNKNOWN_COMMAND_ERROR | 0xFF | Command code not supported
by the module

Furthermore, the error codes described in ucbase . pdf can occur.

52

	Introduction
	Overview
	CAN FD
	EOL versus EOL Packed
	Introduction
	EOL Protocol
	EOL Packed Protocol
	Parallel Execution
	Example with CAN interface
	The Commands
	Resulting Groups
	CAN Trace

	Alternate Length Encoding
	Loading and Configuration
	MODULE Command
	CONFIG_INTERFACE Command

	FASTFLASH
	EOL_GW Commands
	EOL_GW::CONFIG_MODULE (1)
	EOL_GW::READ_VERSION (2)
	EOL_GW::ADJUST_EOL_PROT (5)
	EOL_GW::PROG_FILE (14)
	EOL_GW::CONTITOOLBOX_DOWNLOAD (21)
	EOL_GW::CSMTOOLBOX_DOWNLOAD (22)
	EOL_GW::RMEW_FIND (60)
	EOL_GW::RMEW_MODIFY (61)
	EOL_GW::RMEW_UPDATE (62)
	EOL_GW::RMEW_LOAD (63)
	EOL_GW::RMEW_CRC16 (64)
	EOL_GW::RMEW_RANGES (65)
	EOL_GW::GATEWAY (99)
	EOL_GW::AUTOGATEWAY (100)
	EOL_GW::SINGLEGATEWAY (101)
	EOL_GW::WRITE_EEPROM (104)
	EOL_GW::READ_EEPROM (105)
	EOL_GW::ERASE_EEPROM (106)
	EOL_GW::ErrorCodes

