Power measurements on electrified non-road mobile machines and construction equipment

CSM web seminars

measurement technology

Benefits of electrified mobile machines and construction equipment

Electrification challenges

Power measurement

Requirements for measurements

Taking into consideration:

Scenario (Test bench? Laboratory? Mobile / field use?)

Climatic conditions (Ambient temperature, humidity)

Pollution degree

Signal frequencies to be acquired (Usable bandwidth of the measurement channels)

Operating voltage

Measurement equipment must be completely re-evaluated!

Sensor cables

HV-safe plug connection

Isolation in the measurement device

Power measurement in the electric powertrain

Power measurement between HV battery and inverter

HV Breakout Modules

Measurement of high currents and voltages

- All in one compact solution
- Measurement directly in the HV power cables

HV battery

DC

HV Breakout Module 1.2

HV Breakout Modules

Measurement of high currents and voltages

- Current measurement with shunt modules
 - Inner conductor current I_{nom} : ±50 A to ±1,000 A
 - Shield current
- Voltages up to ±2,000 V
- ► Calculation of active power, apparent power, reactive power, power factor and RMS values U and I directly in the module
- Data rate up to 2 MHz per channel (XCP-on-Ethernet),1 MHz per channel with EtherCAT®
- Additional CAN interface
- For in-vehicle and test bench applications
 - IP67, operating temperature range: -40 °C to +125 °C

Inverter

Electric motor

HV Breakout Modules

Measurement of high currents and voltages

- Cable connection via
 - PowerLok connectors
 - Ring terminals (cable glands)
 - Optional plug & play with customized adapters

HV Breakout Module 1.2 with pre-assembled customer-specific adapters

lectric motor

Power measurement in the electric powertrain

Power measurement between HV battery and inverter

vMeasure – Data acquisition software

- eMobilityAnalyzer power analysis optimized for CSM measurement modules
- Multithreading functionality
- ► Time synchronized data acquisition from
 - CSM measurement modules (HV BM, ECAT, CAN)
 - Vehicle buses (Ethernet, Flexray, CAN FD, ...)
 - ECUs
 - Video, GPS
- Online calculations and scripting
- Multiple visualization options

Power analysis with eMobilityAnalyzer and HV Breakout Module

Short measurement chain for power calculation

- **HV Breakout Module** provides the digital instantaneous values (samples) of voltage u_n and current i_n .
- ► Real-time calculation of interval-related quantities such as active power *P* in the eMobilityAnalyzer.

$$P = \frac{1}{T} \int_0^T u(t) \times i(t) dt \qquad P = \frac{1}{N} \sum_{n=0}^N u_n i_n \Delta t$$

Electric motor

eMobilityAnalyzer - Function library

The eMobilityAnalyzer enables a real-time analysis of

Mechanical power and work of an axle

ChargerEfficency Efficiency charging system

Analysis of a direct current signal DCAnalysis

DCEfficency Efficiency of a converter

eMotorPowerAnalysis E-motor power analysis

E-motor star delta transformation

Harmonic analysis

Inverter efficiency

Pulse width modulation power analysis

Ripple of a direct current signal

Mech. power from torque and speed

AxlePower

eMotorYdelta

► Harmonics

InverterEfficency

PWMPowerAnalysis

Ripple

ShaftPower

Power analysis on a DC signal

Name	Comment	Base data type
V DCAnalysis		STRUCT(112)
DCAnalysis.Ah	Total charge [Ah]	DOUBLE
DCAnalysis.ldc	Average current [A]	DOUBLE
DCAnalysis.lmax	Maximal current [A]	DOUBLE
DCAnalysis.lmin	Minimal current [A]	DOUBLE
DCAnalysis.lpp	Peak-to-peak current [A]	DOUBLE
DCAnalysis.lrms	Root mean square current [A]	DOUBLE
DCAnalysis.P	Active power [W]	DOUBLE
DCAnalysis.S	Apparent power [VA]	DOUBLE
DCAnalysis.Udc	Average voltage [V]	DOUBLE
DCAnalysis.Umax	Maximal voltage [V]	DOUBLE
DCAnalysis.Umin	Minimal voltage [V]	DOUBLE
DCAnalysis.Upp	Peak-to-peak voltage [V]	DOUBLE
DCAnalysis.Urms	Root mean square voltage [V]	DOUBLE
DCAnalysis.W	Total energy [kWh]	DOUBLE
<		>
	OK	Cancel Help
	Electric motor	

HV Breakout Module 1.2

HV battery

Power analysis of a DC signal

Power measurement in the electric powertrain Power measurement between inverter and electric motor

Power measurement in the electric powertrain Power measurement between inverter and electric motor

HV Breakout Module 3.3

HV BM 3.3 on www.csm.de

- Measurement of 3-phase currents and voltages
- Power analysis with the eMobilityAnalyzer
- Output of measurement data at a rate of up to 2 MHz per measured value via XCP-on-Ethernet

HV battery HV

HV Breakout Module 1.2

Inverter

Hy Riegkout Module 3"3

FIECTRIC MOTOR

Power measurement in the electric powertrain

Power measurement between inverter and electric motor

HV Breakout Module 3.3

- ► Voltages up to ±1,000 V (measuring range for transients up to ±2,000 V)
- Currents up to ±800 A (nominal value shunt module) (measuring range for peaks up to ±1,400 A)
- Optional "XCP Gateway" function for connecting additional CSM CAN and EtherCAT® measurement modules

Optional PTP Sync (IEEE 1588)

Power measurement in the electric powertrain

Power measurement between inverter and electric motor

3-phase power measurement (3φ3L, 3V3*P* Phase-synchronous measurement of curr

Inverter

Easy configuration in the eMobilityAnalyzer

HV Breakout

Power measurement in the electric powertrain

Efficiency measurement at the inverter

Power measurement in the elec Efficiency measurement at the i

Calculation in the eMobilityAnalyzer

Power measurement in the electric powertrain

Calculation of the overall efficiency

Power measurement in the electric Calculation of the overall efficient

Calculation in the eMobilityAnalyzer

$$Efficiency \ \eta \ = \ \frac{P_{mech}}{P_{el}} \ = \ \frac{\textit{Mechanical shaft power on the electric motor}}{\textit{Electrical power at inverter input}}$$

XCP-on-Ethernet

Power measurement in the ele Performance analysis

Real-time visualization in vMeasure

Multiple visualization of different simultaneous eMobilityAnalyses

The Vector CSM E-Mobility Measurement System

Power measurements on electrified non-road mobile machines and construction equipment

The Vector CSM E-Mobility Measurement System allows simple and precise

electrical power measurements

acquisition of additional thermal and mechanical values

use in road tests or on the test bench

About CSM

CSM has been setting technological standards for decentralized measurement technology in vehicle development for over 35 years. Our CAN bus and EtherCAT® measurement devices support worldwide renowned vehicle manufacturers, suppliers and service providers in their developments.

Continuous innovation and long-term satisfied customers are our guarantee for success. Together with our partner Vector Informatik, we have developed an easily scalable and powerful E-Mobility Measurement System for hybrid and electric vehicles and are constantly expanding the areas of application. With our high-voltage safe measurement systems designed for fast and synchronous measurements and power analyses, we actively accompany the change to E-Mobility.

Raiffeisenstraße 36 70794 Filderstadt

Phone: +49 711 - 77 96 40

email: sales@csm.de

CSM GmbH (Germany, International) **CSM Products, Inc. USA** (USA, Canada, Mexico)

1920 Opdyke Court, Suite 200

Auburn Hills, MI 48326

Phone: +1 248 836-49 95

email: sales@csmproductsinc.com

For more information and the current dates of CSM Xplained, please visit

