

CSM Web Seminars

- Agenda
 - Basics
 - Measurement Technology
 - Application examples

- Agenda
 - Basics

Electric current, known from literature, study, internet, practice

- ▶ Direct current (DC)
- Alternating current (AC)
- Mixed or variable current

Electric current, known from literature, study, internet, practice

- ▶ Direct current (DC)
- Alternating current (AC)
- Mixed or variable current

Ammeters = current meters = ampere meters

Electric current, known from literature, study, internet, practice

- ▶ Direct current (DC)
- Alternating current (AC)
- Mixed or variable current

Ammeters = current meters = ampere meters

Measuring transducer: Measure I, output I or U or ...

Measuring converter: Measure I, output on digital bus

Electric current, known from literature, study, internet, practice

- Direct current (DC)
- Alternating current (AC)
- Mixed or variable current

Ammeters = current meters = ampere meters

Measuring transducer: Measure I, output I or U or ...

Measuring converter: Measure I, output on digital bus

Popular Current Sensors:

- Current clamp, hinged transformer, closed ring
- ▶ Shunts, hall sensors, zero flux transducers, Rogowski coils
- Sampling Rate, bandwidth

- ► Inner conductor
 - Large variable parts of the current?

- ► Inner conductor
 - Large variable parts of the current?
- ► Braided Shield

- ► Inner conductor
 - Large variable parts of the current?
- ▶ Braided Shield
- ► Shield currents
 - Usually between inverter and E-machine
 - Between inverter and braking resistor

- ► Inner conductor
 - Large variable parts of the current?
- Braided Shield
- ► Shield currents
 - Usually between inverter and E-machine
 - Between inverter and braking resistor
- Potential effects
 - Burnt contacts
 - Scorched shields?

Power Measurements in EV High-Voltage Electrical Systems

Electric current in electromobility

Charging System(s) feed the HV Battery

HV battery feeds consumers

- Inverter -> E-machine
- Small consumers

Current results from PWM-controlled voltage

Small consumers have built-in PWM control

Electric current in electromobility

Charging System(s) feed the HV Battery

HV battery feeds consumers

- Inverter -> E-machine
- Small consumers

Current results from PWM-controlled voltage

Small consumers have built-in PWM control

Current is never only direct current

Current has alternating components

- Agenda
 - Basics
 - Measurement Technology

WLTC – Worldwide harmonized Light-duty vehicles Test Cycles EPA (Environmental Protection Agency) Drive Cycles

Fuel consumption in driving condition

- ► Diesel, carburetor fuel
- **...**
- Electrical energy E [kWh]
- Electrical work W [kWh]
- ▶ Battery energy E = Q * U
- I(t) = dQ / dt
 - LV-Batterie ±2.5 A .. ±1,500 A

WLTC – Worldwide harmonized Light-duty vehicles Test Cycles **EPA (Environmental Protection Agency) Drive Cycles**

Fuel consumption in driving condition

- ► Diesel, carburetor fuel
- Electrical energy E [kWh]
- Electrical work W [kWh]
- Battery energy E = Q * U
- ► I(t) = dQ / dt
 - LV-Batterie ±2.5 A .. ±1,500 A

WLTC – Worldwide harmonized Light-duty vehicles Test Cycles EPA (Environmental Protection Agency) Drive Cycles

Fuel consumption in driving condition

- ► Diesel, carburetor fuel
- **...**
- Electrical energy E [kWh]
- Electrical work W [kWh]
- ▶ Battery energy E = Q * U
- I(t) = dQ / dt
 - LV-Batterie ±2.5 A .. ±1,500 A

WLTC – Worldwide harmonized Light-duty vehicles Test Cycles EPA (Environmental Protection Agency) Drive Cycles

Fuel consumption in driving condition

- ► Diesel, carburetor fuel
- **...**
- Electrical energy E [kWh]
- Electrical work W [kWh]
- ▶ Battery energy E = Q * U
- ► I(t) = dQ / dt
 - LV-Batterie ±2.5 A .. ±1,500 A

LEM sensor packages by CSM ≥ 100 kHz

Current measurements

- Wide variety of measuring ranges
 - ±5 A .. >> ±1000 A
- ► Integrated DC supply
 - 9 V .. 36 V
- Measurement of U_{out} with fast AD converter
- Parameterization and calibration data in TEDS chip

LEM sensor packages by CSM ≥ 100 kHz

Current measurements

- Wide variety of measuring ranges
 - ±5 A .. >> ±1000 A
- Integrated DC supply
 - 9 V .. 36 V
- Measurement of U_{out} with fast AD converter
- Parameterization and calibration data in TEDS chip
- ► (HV) connector does not fit through LEM
- I_mess = shield current + inner conductor
- Latency

CSM AD converter and transducer from HIOKI, DC ... ≥100 kHz

Current measurements with clamp

- Various measuring ranges
- Measurement of U_{out} with fast AD converter
- Limited temperature range
- Suitable for use in vehicle?
 - Test bench
 - Road test
- ► I_mess = shield current + inner conductor

CSM HV Breakout Modules (HV BM) for measuring I and U, calculating P

www.csm.de

There are different HV safe modules

- ► For single phase measurements of Current
 - Shunt inserts, I_{nom}:
 ±50 A, ±125 A, ±250 A, ±500 A, ±800 A
 - I_{Peak} up to ±1,400 A
 - Voltage: Up to 1000 V (working) and 2000 V (peaks)
- ▶ 1 MHz Sampling per channel
- Outputs I, U, P
 - EtherCAT and CAN

HV BM 1.2

=

1 Phase

CSM HV Breakout Modules (HV BM) for measuring I and U, calculating P

www.csm.de

Current measured via **Shunts**

- Calibration data stored in the chip
- Temperature compensated
- Adjustment to the measuring range
- IP67 Enclosure and EN61010 safe

HV BM 1.1

1 Phase

1 PG

5 Module Options

HV BM 1.1 = 1 Phase, 1 HV Cable (V+, V- common insulation)

5 Module Options

- ► **HV BM 1.1** = 1 Phase, 1 HV Cable (V+, V- common insulation)
- ► HV BM 1.2 = 1 Phase, 2 HV Cables (V+, V- Separate insulation)

5 Module Options

- ► **HV BM 1.1** = 1 Phase, 1 HV Cable (V+, V- common insulation)
- ► **HV BM 1.2** = 1 Phase, 2 HV Cables (V+, V- Separate insulation)
- ► HV BM 1.2 +S = HV BM 1.2 + measuring HV Cable Shield currents

5 Module Options

- ► **HV BM 1.1** = 1 Phase, 1 HV Cable (V+, V- common insulation)
- ► **HV BM 1.2** = 1 Phase, 2 HV Cables (V+, V- Separate insulation)
- HV BM 1.2 +S = HV BM 1.2 + measuring HV Cable Shield currents
- **HV BM 3.1** = 3 Phases, 1 Cable (V+, V- common insulation)
- **HV BM 3.3** = 3 Phase, 3 Cables (3 * Separate Insulation) + Integrated XCP-Gateway

5 Module Options

- ► **HV BM 1.1** = 1 Phase, 1 HV Cable (V+, V- common insulation)
- **HV BM 1.2** = 1 Phase, 2 HV Cables (V+, V- Separate insulation)
- HV BM 1.2 +S = HV BM 1.2 + measuring HV Cable Shield currents
- **HV BM 3.1** = 3 Phases, 1 Cable (V+, V- common insulation)
- **HV BM 3.3** = 3 Phase, 3 Cables (3 * Separate Insulation) + Integrated XCP-Gateway

HV BM 1.1

Test-bench

Easy integration into test automation system

In-Vehicle

IP67, -40°C to +125°C

HV BM 1.2 +S

Simplified and Consistent tool-chain (hw and sw) throughout development process

- Agenda
 - Basics
 - Measurement Technology
 - Application examples

Electric current in electromobility

HV battery feeds consumer

- Inverter -> E-machine
- Small consumer

Current results from PWM-controlled voltage

Small consumers have built-in PWM control

Current is never only direct current

Current has alternating components

PTC-Electrical Heater

- Stable supply voltage
- Heating element heats up
- Current and power decrease at the beginning

PTC-Electrical Heater

www.csm.de

Heating power is PWM controlled Well designed buffer capacitor

- ▶ Little feedback on the supply voltage
- ▶ Little ripple in current consumption

Commercial vehicle, HV electrical system

Commercial vehicle, HV electrical system

Braking resistor, measurement of shield current

PWM controlled braking power

3 kHz basic system frequency

HV BM

www.csm.de

Captures Spikes of 3 μs

Braking resistor, measurement of shield current

Measured, maximum shield currents:

PWM controlled braking power

3 kHz basic system frequency

HV BM

Captures Spikes of 3 μs

LEM Sensor Package + AD4 IG1000

- measurement bandwidth too small to resolve peaks
- Spike latency of ~20 μs
- Measures only 75% of peak current

Electric current in electromobility

HV battery feeds consumer

- ► Inverter -> E-machine
- Small consumer

Current results from PWM-controlled voltage

Small consumers have built-in PWM control

Current is never only direct current

Current has alternating components

Battery to Inverter, HV BM 1.2, measurement of current and voltage

www.csm.de

@ P_{el} ~ 100 kW

- ► PWM controlled drive power
- Great dynamics of the current

$$I_{min} = 203 A$$

$$I_{max} = 312 A$$

$$ightharpoonup \sigma_1 = 27.6 A$$

$$ightharpoonup U_{eff} = 372 V$$

Requires measurement rate much faster than 250 Hz to capture mixed current signal

Electric current in electromobility

HV battery feeds consumer

- Inverter -> E-machine
- Small consumer

Current results from PWM-controlled voltage

Small consumers have built-in PWM control

Current is never only direct current

Current has alternating components

E-machine, three-phase, HV BM 1.2, measurement of current and voltage

www.csm.de

- Motor currents @ 300 Hz (3.3 ms)
- Synchronous machine
- ▶ 3 pole pairs
- ► 6000 rpm
- ► 1,200 A
- PWM and inverter visible

 \bigcirc P_{el} ~ 550 kW

E-machine, three-phase, HV BM 1.2, measurement of current and voltage

- PWM @ 20 kHz (50 μs)
- ► U₂₃ is inverted in the image

@ P_{el} ~ 550 kW

Current measurement in e-mobility with CSM measurement technology

- CSM offers several solutions for the proper application
 - Shunts, LEM, Hioki, Breakout Modules
 - Easy connection to and configuration with CSM Modules
 - Low Voltage (<60 V) and High Voltage (>60 V) Applications
- Robust, HV-safe, on-vehicle uses
- Test bench, road test

