

CSM Web Seminars

Ensuring safety Test bench and road test Verification of simulations under real conditions

Acceleration (a) is defined as the change in the state of motion of a body.

www.csm.de

► Amount of change of the velocity

Acceleration (a) is defined as the change in the state of motion of a body.

- Amount change of the velocity
- ► Change of the direction of the velocity

$$\overrightarrow{a} = \frac{\overrightarrow{v}^2}{r}$$

Carousel from the top

Z y

Combined acceleration

Accelerations often occur simultaneously with different directions

Important for the selection of the right sensors

Acceleration is given in g, or in m/s² (SI).

Motion	Approx. amount of acceleration
Bicycle ride	0.1 – 0.2 g
Driving a car	0.3 – 0.5 g
1,000 km above the earth's surface	0.74 g
100 km above the earth's surface	0.97 g
Mean value for the earth's surface	1 g
Racing car	3 – 4 g
Washing machine spin cycle	600 g
Sewing machine needle	Up to 6,000 g

Vibration

► In this case:

Repeated, persistent changes of direction

What do I have to consider when measuring?

- ► The acceleration of a body can be measured with an accelerometer.
- ► How fast do I measure (selection of the correct measurement data rate)?

Investigation	Frequency
Vibrations e.g. printed circuit board	3 Hz – 2,000Hz
Structure-borne sound investigations	5 Hz – 30,000 Hz
Durability testing	0 Hz - 500 Hz
Airborne sound	20 Hz – 30,000 Hz

Sensor types for acceleration measurement

Typical values	Capacitive sensors
Measurement range	±50 g
Signal output	±2 V
Bandwidth	0 Hz – 300 Hz
Sensor power supply	10 V supply (4-6 wires)

Measurement of accelerations on vehicle parts

Acceleration in a curve (Sustained constant lateral acceleration)

Slow linear acceleration (Train, vehicle)

Static angle determination (Tilting process)

Force applied to a body (e.g. 800 liter tank of a truck attached to the frame)

Sensor types for acceleration measurement

Typical values	Capacitive sensors	Piezoresistive sensors
Measurement range	±50 g	±200 g
Signal output	±2 V	±1 mV
Bandwidth	0 Hz – 300 Hz	0 Hz – 1,000 Hz
Sensor power supply	10 V supply (4-6 wires)	5 V supply (4-6 wires)

www.csm.de

Measurement of relative movements on vehicle parts

Inside a module (e.g. bars in a battery)

Chrash behavior of individual components (Position calculation)

Force applied to a body
(Dummy)

Sensor types for acceleration measurement

Typical values	Capacitive sensors	Piezoresistive sensors	IEPE - Sensors
Measurement range	±50 g	±200 g	±500 g
Signal output	±2 V	±1 mV	±100 mV ± 5 V
Bandwidth			2 Hz – 20,000 Hz
Sensor power supply	10 V supply (4-6 wires)	5 V supply (4-6 wires)	Power supply (2-wire)

www.csm.de

Measurement of vibration frequencies

Structure-borne sound (Sound radiation from the surface of a body)

Airborne sound (Microphone)

Vibrations (Vibration excitation)

Natural frequencies (Printed circuit board, busbar, bracket)

Shock (Knock sensor, contact)

Contact stroke (Break-in, frame collision with component)

Modal analysis (Model matching, damage analysis)

Which measurement device do I use?

► How fast do I have to measure? Typical data rate 1 Hz... 100 kHz, max. 1 MHz

► How big is my signal voltage? Measurement range ±3 mV... ±5 V

Which sensor do Luse? IEPE, capacitive, piezoresistive

Limits: 60 V DC / 30 V AC Low voltage / High voltage

Who may install and measure? Observe regulations!

For voltages above 60 V DC and 30 V AC: Observe HV regulations!

Measurement chain for acceleration measurement (in environments up to 60 V)

► Each accelerometer requires a supply voltage

www.csm.de

Suitable accelerometer

Measuring device

Suitable measuring devices for accelerations (in environments up to 60 V)

www.csm.de

Example: CSM CAN and ECAT measurement modules

- Various module types
 - Analog signal voltage (mV or V -range)
 - IEPE
 - Sensor supply
 - TEDS
- Sampling rates: up to 100 kHz (max. 1 MHz)
- Operating temperature range: -40 °C to +125 °C
- ► IP67

CAN measurement module AD4 pro MC10

ECAT (EtherCAT®) measurement module AD4 IE100

*Example measurement modules

Measurement chain for acceleration measurement (in environments up to 60 V)

► Each accelerometer requires a supply voltage

AD4 IE100

Measurement chain for acceleration measurement (in environments up to 1,000 V)

www.csm.de

► Each accelerometer requires a supply voltage

Measuring device

Suitable measuring devices for accelerations (in environments up to 1,000 V)

Example: CSM HV CAN and HV ECAT AD measurement modules

- Signal voltages from μV to V
- Sampling rates: up to 100 kHz
- ▶ Operating temperature range: -40 °C to +125 °C
- ► IP67
- TEDS

HV ECAT measurement module HV STG4 pro BS20

HV ECAT measurement module
HV IEPE3 FL100

- ► HV-safe connector
- Mechanical connector guide for tightness and bend protection
- Reinforced insulation
- Type-tested according to safety standard
 EN61010 by accredited test laboratory
- Unit test with certificate
 - 3,100 V ramp 5 sec each

*Example measurement modules

Measurement chain for acceleration measurement (in environments up to 1,000 V)

► Each accelerometer requires a supply voltage

- Battery modules are mounted individually and have a relative movement to each other.
- The busbar is thus subject to corresponding vibrations.
- In extreme cases, these can lead to a crack in the busbar and thus to a failure of the battery.

- Battery modules are mounted individually and have a relative movement to each other.
- The busbar is thus subject to corresponding vibrations.
- In extreme cases, these can lead to a crack in the busbar and thus to a failure of the battery.
- ► HV-safe acceleration measurement required.

- Battery modules are mounted individually and have a relative movement to each other.
- The busbar is thus subject to corresponding vibrations.
- In extreme cases, these can lead to a crack in the busbar and thus to a failure of the battery.
- ► HV-safe acceleration measurement required.

- ▶ Bad road driving
- Measurement of vibration transmission paths from the wheel to the busbar

- ▶ Bad road driving
- Measurement of vibration transmission paths from the wheel to the busbar

- ▶ Bad road driving
- Measurement of vibration transmission paths from the wheel to the busbar

www.csm.de

Component (busbar)

Gathering of a load level

Applications: HV battery drop test

Applications: HV battery drop test

"Korea Motor Vehicle Safety Standard" (KMVSS)

This standard requires that the battery pack (with a state of charge of 80%) hits a concrete floor from a height of 4.90 meters.

A combined measurement with sensors inside and outside the HV environment is necessary.

Typical values	Capacitive sensors	Piezoresistive sensors	IEPE - Sensors
Measurement range	±50 g	±200 g	±500 g
Signal output	±2 V	±1 mV	±100 mV ±5 V
Bandwidth	0 Hz – 300 Hz	0 Hz – 1,000 Hz	2 Hz – 20,000 Hz
Sensor power supply	10 V supply (4-6 wires)	5 V supply (4-6 wires)	Power supply (2-wire)

Suitable measurement technology for different sensor types:

Conventional and HV-safe.

About CSM

CSM has been setting technological standards for decentralized measurement technology in vehicle development for over 35 years. Our CAN bus and EtherCAT® measurement devices support worldwide renowned vehicle manufacturers, suppliers and service providers in their developments.

Continuous innovation and long-term satisfied customers are our guarantee for success. Together with our partner Vector Informatik, we have developed an easily scalable and powerful E-Mobility

Measurement System for hybrid and electric vehicles and are constantly expanding the areas of application. With our high-voltage safe measurement systems designed for fast and synchronous measurements and power analyses, we actively accompany the change to E-Mobility.

CSM GmbH (Germany, International)

Raiffeisenstraße 36 70794 Filderstadt

Phone: +49 711 - 77 96 40

email: sales@csm.de

www.csm.de

CSM Products, Inc. USA (USA, Canada, Mexico)

1920 Opdyke Court, Suite 200

Auburn Hills, MI 48326

Phone: +1 248 836-49 95

email: sales@csmproductsinc.com

For more information and the current dates of CSM Xplained, please visit

www.csm.de/webseminars

