

2023

Mobile Leistungs- und Wirkungsgradmessungen in der Fahrzeugerprobung von E-Fahrzeugen

Agenda

Challenges in Development of Electrical Driven Vehicles

Analysis of Electrical Power and EfficiencyLaboratory Power AnalyserVector-CSM eMobility Measurement System

Design Goals and Challenges

VECTOR >

Design Goals

- Develop a vehicle that sells
 - > Great looks
 - > Even better image
 - Technical superior
 - Drive experience
- Ultimately, with profit
 - > Material cost
 - ✓ Time
 - Manpower
 - Resources, e.g. testbenches

New Challenges

- Efficiency
- Charging
- Safety and Robustness
- Noise Vibration Harshness

& CSM have solutions for your eMobility challenges

Efficiency is the Ratio of Input vs. Output Power

Indirect Power Measurement by Current and Voltage Measurement

VECTOR >

Challenges at AC Power Measurement – Synchronization

The phase angle φ must be accurately measured so requirements to time synchronous acquisition are very high to avoid

- shifts by time inaccuracy
- any variation in system latency on the different signals acquisition path's
- Precise Synchronization of current and voltage measurement is a MUST for power calculations

VECTOR >

Challenges at AC Power Measurement – Frequency Detection

- The frequency f by period time T detection $(f = \frac{1}{T})$
- Detection of T in noisy signals is a challenge
 - Zero crossing difficult to determine

 Sophisticated statistical algorithms are required to determine period time / frequency

Real Noisy Measurement Signal

VECTOR >

Challenges at AC Power Measurement – Highly Dynamic Frequency Changes

- Very dynamic vehicle operation conditions continuously changes
 - > Acceleration
 - > Breaking
 - > Recuperation
 - > Load changes
 - > Direction changes
 - > Force feed back from road, ...

Frequency and Amplitudes are not steady state, they are changing very dynamically by load and speed

► Frequency detection must be stable/fast enough to follow highly dynamic changes

Challenge eMotor Power Analysis

Accessible measurement points for current and voltage measurement cannot be used directly for power calculation.

The Y-delta transformation or its inverse required to calculate the respective currents and voltages of windings

Delta Motor

Laboratory Power Analyser

Conventional Tools for Power Analysis

- Power analyzer are typically
 - Very precise
 - Made for In-lab usage
 - Limited synchronization to further signal sources
 - > ECUs
 - > Vehicle Bus Signals
 - > ...
 - Missing context information
 - Challenging offline analysis

Power Analysis with Vector-CSM eMobility Measurement System

CSM offers an extensive range of **rugged measurement technology** made **for on road testing**

- Measure voltages, currents, temperatures, strain gauges,...
- Measurement sample rates up to 2 MHz per channel
- Safe operation in HV environments

Power Analysis with Vector-CSM eMobility Measurement System

Vector completes the measurement system with data acquisition systems providing the

eMobilityAnalyzer fast function library with Power Analyzer functionality

Available in CANape, vMeasure, vSignalizer

- Measure power along with
 - > Signals from ECUs, vehicle bus, all kinds of further analog sensors
 - > Context information like GPS, video

► All precisely synchronized and stored to the same measurement file

→ eMobilityAnalyzer

- ✓ DCAnalysis
- ✓ eMotorPowerAnalysis

VECTOR

- ✓ eMotorYdelta
- ✓ DCEfficiency
- ChargerEfficiency
- ✓ Ripple
- ✓ ShaftPower
- ✓ AxlePower
- ✓ LinearMean
- ✓ TrueRMS
- ✓ Slope
- ✓ Harmonics

New Functions in eMobilityAnalyzer 1.0.4

Function	Short Description		eMobilityAnalyzer
HarmonicPower	HarmonicPower is an extension of the active power of the fund	n to the HarmonicAnalysis function for calculation Jamental and higher harmonics.	1.0.3
eMotorPhaseAnalysis	This function analyses the pha phase electric motor. It also ca fundamentals.	se angles between voltages and currents in a 3- Ilculates the root-mean-square values of the	1.0.4
PhaseAnalysis	Phase angle and time shift bet their fundamental oscillations. are also calculated.	ween two periodic signals are analyzed based on The root-mean-square-values of the fundamentals	1.0.4
Frequency	The fundamental frequency of calculated by this function.	a periodic signal and its changing rate are	1.0.4
SingleFrequencyAnalysis	This function conducts a Fourie corresponds to the calculation (DFT). The function offers win- and levels.	er analysis for a single prescribed frequency. It of a single bin in a discrete Fourier transform dowing and calculates root-mean-square-values	1.0.4
AlphaBeta	This function conducts a Clark including calculation of the zer not need to be balanced.	e transformation of three-phase quantities, also o-sequence component, so that the quantities do	1.0.4

Extensible Fast Function Framework

- ▶ Further Fast Functions will be released with next Release CANape 22 / vMeasure 8
 - ► FFT
 - **)** ...
- Extensibility with Customer Specific Functions
 - ▶ We can offer you to implement your special customer functions on demand
 - These can be added to the framework at any time, no dependency on release cycles of CANape/vMeasure

Power Analysis with Vector-CSM eMobility Measurement System

- ► All equipment is capable for On-Road Vehicle Trials and Laboratory use cases
- ▶ Vector Smart Logger can run the measurements fully automated in On-Road Tests
- And automated Data Analysis and Reporting can be realized with Vectors Measurement Data Management Tool vMDM

For more information about Vector and our products please visit

www.vector.com/emobilityanalyzer www.vector.com/csm

Author: Ruoff, Boris Vector Germany

