

Autonomous power measurement in road tests and on test benches

CSM web seminars

Innovative Measurement and Data Technology

Power Measurement

Power Analysis

Different technical requirements of various applications

Different requirements for measurement equipment

(including functions, measurement accuracy, range of application)

www.csm.de

Diverse budget requirements

Development and optimization of components and systems

Power Analysis

Measured values from two or more measuring points

- Cross-measurement module calculations
- Most accurate synchronization

Complex mathematical analyses

- Advanced, complex mathematics
- Transformations
- High accuracy

Higher-level computing unit

Investigation of highly dynamic processes

- Transient power analysis
- Period determination in real time
- Short integration intervals

Power Measurement

"Wattmeter" Determining a status quo

Power output of energy sources

(e. g. HV batteries, fuel cell stack)

Power consumption of electrical consumers

(e.g. individual components, in cables)

"Simple" calculation of key power values

(active power, reactive power, apparent power, power factor)

Power Measurement

Focus of this web seminar: Sufficient for many applications in the DC / AC range

Power Analysis

More information: CSM Xplained Web Seminars on the Vector CSM E-Mobility Measurement System

Calculation of standard power values (e.g. active, reactive, apparent power, power factor, instantaneous power)	Overall powertrain efficiency
Energy consumption of individual components (e.g. benchmarking)	Inverter efficiency, OBC efficiency
Consumption according to WLTP	E-motor analysis incl. star-delta transformation
Maximum power output of (HV) batteries, fuel cell stacks,	Transient power analysis of highly dynamic processes(engine run-ups, change of direction of energy flows during recuperation, torque vectoring)
Simple charging (DC fast charging, AC charging)	Harmonic analysis
Functional tests	Work, energy flow, power loss
Acceptance and component test benches, dynamometers	Clark transformation
Endurance driving test, mobile power meter	Calculation of system parameters
Benchmarks	PWM analysis
System surveillance (monitoring)	Calculation of complex physical parameters

Power Measurement Requirements

Solution for mobile application:

- Compact dimensions
- Robust housing
- Protection class IP 65 or higher

Required values:

- Active power (P)
- Apparent power (S)
- Reactive power (Q)
- (Active) power factor (λ)

Connectivity options:

- Standard (test bench) systems
- Data logger

Required:

 RMS values of current and voltage, even with AC overlays and current / voltage dips

Power Measurement with HV Breakout Modules

Power Measurement with HV Breakout Modules

Solution for mobile application:

- Compact dimensions
- Robust housing
- Protection class IP 65 or higher

HV Breakout Module 1.2

Measurement of high currents and voltages

- All in one compact solution
- Measurement directly in the HV power cables
- ► For in-vehicle and test bench applications
 - IP67
 - Operating temperature range: -40 °C to +125 °C

HV Battery **HV BM 1.2** Inverter Electric Motor

HV BM 1.2 on

Power Measurement witl

HV Breakout Module 1.2

Measurement of high currents and voltages

- Current measurement with shunt modules
 - Inner conductor current I_{nom} : ±50 A up to ±2,000 A
- ▶ Voltages up to ±2,000 V
- Data rate up to 1 MHz per channel (EtherCAT®)
- Additional CAN interface

HV Battery **HV BM 1.2** Inverter Electric Motor

Power Measurement with

HV Breakout Module 1.2

Measurement of high currents and voltages

- ► Cable connection via
 - PowerLok connector system
 - Cable glands
 - Optional plug & play with customized plug adapters

HV Battery HV BM 1.2 Inverter Electric Motor

Required values:

- Active power (P)
- Apparent power (S)
- Reactive power (Q)
- (Active) power factor (λ)

Power Channels HV BM 1.x

The internally acquired signals of

- Current
- Voltage

are used for the module-internal calculation of

- Active power P in W
- Apparent power S in VA
- Reactive power **Q** in var
- Power factor λ

ing Station On-Board Charger HV Battery HV BM 1.2 Inverter Electric Motor

Required values:

- Active power (P)
- Apparent power (S)
- ► Reactive power (Q)
- (Active) power factor (λ)

Required:

 RMS values of current and voltage even with AC overlays and current / voltage dips

Power Channels HV BM 1.x

The recorded internal signals of

- Current
- Voltage

are used for the module-internal calculation of

- Active power P in W
- Apparent power S in VA
- Reactive power **Q** in var
- Power factor λ
- TrueRMS value voltage U_{rms} in V
- ► TrueRMS value current I_{rms} in A

HV Battery **HV BM 1.2** Inverter Electric Motor

Power Channels HV BM 1.x

Power Measurement witl

AC

Power Channels HV BM 1.x

- **Power Measurement witl**
- AC AC
- ► Additional measurement channels
- Integration times

- Fixed integration intervals from 10 ms 10 s
- Manually entered and not changeable for the measurement duration
- For expected significant frequency changes :
 - Long integration intervals necessary

HV Battery HV BM 1.2 Inverter Electric Motor

Power channels HV BM 1.x

- ► Additional measurement channels
- ► Integration times
- Data output via CAN

Power Measurement with HV Breakout Modules

Power Measurement with

HV Breakout Module 3.3

HV BM 3.3 on www.csm.de

- Measurement of 3-phase currents and voltages
- Output of measurement data at a rate of up to 2 MHz per value via XCP-on-Ethernet

Power Channels HV BM 3.x Power Measurement with Measurement circuit 3P3W 12 U_{23} **U**₃₁ Aron circuit AC **Two-wattmeter method** AC $P = P(U_{12}, I_1) + P(U_{23}, I_2)$ DC **HV BM 3.3** HV BM 1.2

Power Channels HV BM 3.x

Power Measurement witl

Additional measurement channels

HV Battery HV BM 1.2 Inverter HV BM 3.3 Electric Motor

Power Measurement witl

Power Channels HV BM 3.x

- Additional measurement channels
- Integration intervals
- ► Fixed integration times of 10 ms 10 s
- Due to the measurement method
 - No measurement of leakage currents
 - No measurement of asymmetries

CSM

Power Channels HV BM 3.x

- Additional measurement channels
- ► Integration times
- Data output via XCP-on-Ethernet and CAN

Data output

Measurement computer and data logger

- Output of power values together with values of current and voltage
- Via CAN and XCP-on-Ethernet
- Direct control on measurement computer
 - Reduced data stream
 - No additional load on the CPU of the computer
 - Direct further processing in the automation system
- Parallel recording on data logger

Modules

Data output

2023-09-20

Easy data integration into software solutions

No further, special software for power measurement required

Slide 24

Can be used in various software solutions and automation systems (Vector Informatik, ETAS, AVL PUMA, Beckhoff, NI, etc.)

Connectivity options:

- Standard (test bench) systems
- Data logger

www.csm.de

Modules

Data output

Easy data integration into software solutions

- ► No further, special software for power measurement required
- ► Can be used in various software solutions and automation systems (Vector Informatik, ETAS, AVL PUMA, Beckhoff, NI, etc.)
- Same measurement technology in the road test as on the test bench
 - Measured values from both scenarios are directly comparable

Power Measurement Requirements

Solution for mobile application:

- Compact dimensions
- Robust housing
- Protection class IP 65 or higher

Required values:

- Active power (P)
- Apparent power (S)
- Reactive power (Q)
- (Active) power factor (λ)

Connectivity options:

- Standard (test bench) systems
- Data logger

Required:

 RMS values of current and voltage, even with AC overlays and current / voltage dips

WLTP Measurement

WLTP Measurement

Power Channels HV BM 3.x

Measurement circuit HV BM 3.1 OBC

HV BM 1.2 HV Battery HV BM 1.2 Inverter HV BM 3.3 Electric Motor

Power Measurement

- Energy consumption of individual components (e.g. during benchmarking)
- Maximum power output of (HV) batteries, fuel cell stacks, etc.
- Simple charging processes (e.g. DC fast charging, AC charging)
- Functional tests
- Acceptance and component test benches, dynamometers
- Endurance driving test
- Benchmarks
- System surveillance (monitoring)

About CSM

CSM has been setting technological standards for decentralized measurement technology in vehicle development for over 35 years. Our CAN bus and EtherCAT® measurement devices support worldwide renowned vehicle manufacturers, suppliers and service providers in their developments.

Continuous innovation and long-term satisfied customers are our guarantee for success. Together with our partner Vector Informatik, we have developed an easily scalable and powerful E-Mobility Measurement System for hybrid and electric vehicles and are constantly expanding the areas of application. With our high-voltage safe measurement systems designed for fast and synchronous measurements and power analyses, we actively accompany the change to **E-Mobility**.

CSM GmbH (Germany, International)

Raiffeisenstraße 36 70794 Filderstadt

Phone: +49 711 - 77 96 40

email: sales@csm.de

www.csm.de

CSM Products, Inc. USA (USA, Canada, Mexico)

1920 Opdyke Court, Suite 200

Auburn Hills, MI 48326

Phone: +1 248 836-49 95

email: sales@csmproductsinc.com

For more information and the current dates of CSM Xplained, please visit

